4,167 research outputs found

    Topology effects on the heat capacity of mesoscopic superconducting disks

    Full text link
    Phase transitions in superconducting mesoscopic disks have been studied over the H-T phase diagram through heat capacity measurement of an array of independent aluminium disks. These disks exhibit non periodic modulations versus H of the height of the heat capacity jump at the superconducting to normal transition. This behaviour is attributed to giant vortex states characterized by their vorticity L. A crossover from a bulk-like to a mesoscopic behaviour is demonstrated. CpC_{\rm p} versus H plots exhibit cascades of phase transitions as L increases or decreases by one unity, with a strong hysteresis. Phase diagrams of giant vortex states inside the superconducting region are drawn in the vortex penetration and expulsion regimes and phase transitions driven by temperature between vortex states are thus predicted in the zero field cooled regime before being experimentally evidenced

    UNLV Wind Orchestra & Green Valley High Symphonic Band

    Full text link
    Program listing performers and works performed

    Surface-induced near-field scaling in the Knudsen layer of a rarefied gas

    Full text link
    We report on experiments performed within the Knudsen boundary layer of a low-pressure gas. The non-invasive probe we use is a suspended nano-electro-mechanical string (NEMS), which interacts with 4^4He gas at cryogenic temperatures. When the pressure PP is decreased, a reduction of the damping force below molecular friction P\propto P had been first reported in Phys. Rev. Lett. Vol 113, 136101 (2014) and never reproduced since. We demonstrate that this effect is independent of geometry, but dependent on temperature. Within the framework of kinetic theory, this reduction is interpreted as a rarefaction phenomenon, carried through the boundary layer by a deviation from the usual Maxwell-Boltzmann equilibrium distribution induced by surface scattering. Adsorbed atoms are shown to play a key role in the process, which explains why room temperature data fail to reproduce it.Comment: Article plus supplementary materia

    Thermal signatures of Little-Parks effect in the heat capacity of mesoscopic superconducting rings

    Full text link
    We present the first measurements of thermal signatures of the Little-Parks effect using a highly sensitive nanocalorimeter. Small variations of the heat capacity C_pC\_p of 2.5 millions of non interacting micrometer-sized superconducting rings threaded by a magnetic flux Φ\Phi have been measured by attojoule calorimetry. This non-invasive method allows the measurement of thermodynamic properties -- and hence the probing of the energy levels -- of nanosystems without perturbing them electrically. It is observed that C_pC\_p is strongly influenced by the fluxoid quantization (Little-Parks effect) near the critical temperature T_cT\_c. The jump of C_pC\_p at the superconducting phase transition is an oscillating function of Φ\Phi with a period Φ_0=h/2e\Phi\_0=h/2e, the magnetic flux quantum, which is in agreement with the Ginzburg-Landau theory of superconductivity.Comment: To be published in Physical Review B, Rapid Communication

    Green Valley High School & UNLV Wind Orchestra

    Full text link
    Program listing performers and works performed

    Caring for someone dying at home

    Get PDF
    Assisting those caring for a terminally ill family member at home can be a rewarding but challenging nursing experience. Providing adequate nursing support is critical to the success of this type of caring
    corecore