2 research outputs found
Recrystallization in an Mg-Nd alloy processed by high-pressure torsion: a calorimetric analysis
Differential scanning calorimetry (DSC) was used to evaluate the recrystallization temperature and activation energy for an Mg-1.43Nd (wt.%) alloy after severe plastic deformation by high-pressure torsion (HPT) at room temperature up to 10 turns. The recrystallization kinetics were determined from DSC analysis. The results show that the recrystallization temperature increases with increasing heating rate and decreases with increasing numbers of HPT turns. Severe plastic deformation by HPT significantly reduces the recrystallization temperature. The estimated activation energy for recrystallization was in the range of ~ 84-89 kJ mol-1
An investigation by EXAFS of local atomic structure in an Mg-Nd alloy after processing by high-pressure torsion and ageing.
The local atomic structure of an Mg-1.44Nd (wt.%) alloy was investigated after solution annealing, high-pressure torsion (HPT) processing up to 1 and 10 turns and ageing at 250 °C for 5 h using X-ray absorption fine structure (XAFS) measurements at the Nd LIII-edge. The results show that HPT processing has no effect on the atomic structure around Nd atoms compared to the unprocessed state, whereas ageing at 250 °C for 5 h induces a significant modification in the coordination number and interatomic distances around the Nd atoms. These variations are analyzed based on the correlations between precipitation, defects and atomic mobility of the chemical species