3 research outputs found

    Generation of a healthy heavy smoker patient-derived induced pluripotent stem cell line UHOMi007-A from peripheral blood mononuclear cells

    No full text
    International audienceHuman pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized healthy heavy smoker male donor free from emphysema or tobacco related disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi007-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing

    The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2

    No full text
    Airway–liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments

    Prospective evaluation of intensity-modulated radiotherapy toxicity in extremity soft tissue sarcomas patients: A role for irradiated healthy soft tissue volume?

    No full text
    Aim: To prospectively assess toxicities of curative-intent intensity-modulated conformal radiotherapy (IMRT) in patients with extremity soft tissue sarcomas (ESTS). Methods: Data from 59 consecutive patients with ESTS between 2014 and 2019 were both retrospectively and prospectively analysed. Toxicity data were collected both by confidential mailed survey (39% completed) and medical charts, and graded according to CTCAE v5.0. Normal tissues dosimetric data (healthy soft tissue segment, joint and bone) were included. The healthy soft tissue segment was created by adding 5 cm on either side of the PTV on CT axial slices, the PTV and bone (and articulation if present) were then removed from the generated volume. Results: IMRT was delivered post-operatively for nearly half of patients (n = 24, 41%), preoperatively for 18 (31%) and exclusively for 17 (28%; salvage: 13% or immediately inoperable: 15%). The median total dose delivered to the planned target volume (PTV) was 50.4 Gy (36–68 Gy) and 13 patients (22%) received a boost. With a median follow-up of 27 months (6–94 months), a total of 87 late effects were identified in 44/59 (75%) patients: 89% G1–2, and 11% G3–4. The main G1-2 toxicities were: functional limitation (36%), oedema (29%), gait disorders (20%), neurological disorders (20%) and chronic pain (32%). G3-4 toxicities were pain (n = 2), arterial stricture (n = 1) and a chronic wound requiring skin graft (n = 2). No bone fracture was observed. Quality of life was rated as good or very good in 70% patients who completed the survey. Larger (>3500 cm3) healthy soft tissue segment volume was associated with decreased late toxicities (p = 0.02). No other predictive factor of toxicity was identified. The 2-year rates of local control, overall survival and recurrence-free survival were 90%, 90% and 64%, respectively. Conclusion: Healthy soft tissue segment volume influenced toxicity. Long-term prospective monitoring in a homogeneous population remains critical to assess the impact of IMRT induced chronic toxicity in ESTS patients. This should ideally lead to a validated normal tissue dose constraint (e.g.: healthy soft tissue segment volume > 3500 cm3) to recommend for practitioners to help reduce the late toxicity risk
    corecore