13 research outputs found

    Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing knowledge about cellular interactions in the immune system, including the central role of cytokine networks, has lead to new treatments using monoclonal antibodies that block specific components of the immune system. Systemic cytokine concentrations can serve as surrogate outcome parameters of these interventions to study inflammatory pathways operative in patients <it>in vivo</it>. This is now possible due to novel technologies such as multiplex immunoassays (MIA) that allows detection of multiple cytokines in a single sample. However, apparently trivial underappreciated processes, (sample handling and storage, interference of endogenous plasma proteins) can greatly impact the reliability and reproducibility of cytokine detection.</p> <p>Therefore we set out to investigate several processes that might impact cytokine profiles such as blood collecting tubes, duration of storage, and number of freeze thawing cycles.</p> <p>Results</p> <p>Since under physiological conditions cytokine concentrations normally are low or undetectable we spiked cytokines in the various plasma and serum samples. Overall recoveries ranged between 80-120%. Long time storage showed cytokines are stable for a period up to 2 years of storage at -80°C. After 4 years several cytokines (IL-1α, IL-1β, IL-10, IL-15 and CXCL8) degraded up to 75% or less of baseline values. Furthermore we show that only 2 out of 15 cytokines remained stable after several freeze-thawing cycles. We also demonstrate implementation of an internal control for multiplex cytokine immunoassays.</p> <p>Conclusion</p> <p>All together we show parameters which are essential for measurement of cytokines in the context of clinical trials.</p

    Differential gene expression profiles are dependent upon method of peripheral blood collection and RNA isolation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA isolation and purification steps greatly influence the results of gene expression profiling. There are two commercially available products for whole blood RNA collection, PAXgene™ and Tempus™ blood collection tubes, and each comes with their own RNA purification method. In both systems the blood is immediately lysed when collected into the tube and RNA stabilized using proprietary reagents. Both systems enable minimal blood handling procedures thus minimizing the risk of inducing changes in gene expression through blood handling or processing. Because the RNA purification steps could influence the total RNA pool, we examined the impact of RNA isolation, using the PAXgene™ or Tempus™ method, on gene expression profiles.</p> <p>Results</p> <p>Using microarrays as readout of RNA from stimulated whole blood we found a common set of expressed transcripts in RNA samples from either PAXgene™ or Tempus™. However, we also found several to be uniquely expressed depending on the type of collection tube, suggesting that RNA purification methods impact results of differential gene expression profiling. Specifically, transcripts for several known PHA-inducible genes, including IFNγ, IL13, IL2, IL3, and IL4 were found to be upregulated in stimulated vs. control samples when RNA was isolated using the ABI Tempus™ method, but not using the PAXgene™ method (p < 0.01, FDR corrected). Sequenom Quantiative Gene Expression (QGE) (SanDiego, CA) measures confirmed IL2, IL4 and IFNγ up-regulation in Tempus™ purified RNA from PHA stimulated cells while only IL2 was up-regulated using PAXgene™ purified (p < 0.05).</p> <p>Conclusion</p> <p>Here, we demonstrate that peripheral blood RNA isolation methods can critically impact differential expression results, particularly in the clinical setting where fold-change differences are typically small and there is inherent variability within biological cohorts. A modified method based upon the Tempus™ system was found to provide high yield, good post-hybridization array quality, low variability in expression measures and was shown to produce differential expression results consistent with the predicted immunologic effects of PHA stimulation.</p

    Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis

    Get PDF
    BACKGROUND Two phase 3 trials (UNCOVER-2 and UNCOVER-3) showed that at 12 weeks of treatment, ixekizumab, a monoclonal antibody against interleukin-17A, was superior to placebo and etanercept in the treatment of moderate-to-severe psoriasis. We report the 60-week data from the UNCOVER-2 and UNCOVER-3 trials, as well as 12-week and 60-week data from a third phase 3 trial, UNCOVER-1. METHODS We randomly assigned 1296 patients in the UNCOVER-1 trial, 1224 patients in the UNCOVER-2 trial, and 1346 patients in the UNCOVER-3 trial to receive subcutaneous injections of placebo (placebo group), 80 mg of ixekizumab every 2 weeks after a starting dose of 160 mg (2-wk dosing group), or 80 mg of ixekizumab every 4 weeks after a starting dose of 160 mg (4-wk dosing group). Additional cohorts in the UNCOVER-2 and UNCOVER-3 trials were randomly assigned to receive 50 mg of etanercept twice weekly. At week 12 in the UNCOVER-3 trial, the patients entered a long-term extension period during which they received 80 mg of ixekizumab every 4 weeks through week 60; at week 12 in the UNCOVER-1 and UNCOVER-2 trials, the patients who had a response to ixekizumab (defined as a static Physicians Global Assessment [sPGA] score of 0 [clear] or 1 [minimal psoriasis]) were randomly reassigned to receive placebo, 80 mg of ixekizumab every 4 weeks, or 80 mg of ixekizumab every 12 weeks through week 60. Coprimary end points were the percentage of patients who had a score on the sPGA of 0 or 1 and a 75% or greater reduction from baseline in Psoriasis Area and Severity Index (PASI 75) at week 12. RESULTS In the UNCOVER-1 trial, at week 12, the patients had better responses to ixekizumab than to placebo; in the 2-wk dosing group, 81.8% had an sPGA score of 0 or 1 and 89.1% had a PASI 75 response; in the 4-wk dosing group, the respective rates were 76.4% and 82.6%; and in the placebo group, the rates were 3.2% and 3.9% (P<0.001 for all comparisons of ixekizumab with placebo). In the UNCOVER-1 and UNCOVER-2 trials, among the patients who were randomly reassigned at week 12 to receive 80 mg of ixekizumab every 4 weeks, 80 mg of ixekizumab every 12 weeks, or placebo, an sPGA score of 0 or 1 was maintained by 73.8%, 39.0%, and 7.0% of the patients, respectively. Patients in the UNCOVER-3 trial received continuous treatment of ixekizumab from weeks 0 through 60, and at week 60, at least 73% had an sPGA score of 0 or 1 and at least 80% had a PASI 75 response. Adverse events reported during ixekizumab use included neutropenia, candidal infections, and inflammatory bowel disease. CONCLUSIONS In three phase 3 trials involving patients with psoriasis, ixekizumab was effective through 60 weeks of treatment. As with any treatment, the benefits need to be weighed against the risks of adverse events. The efficacy and safety of ixekizumab beyond 60 weeks of treatment are not yet known

    Report on the 2018 cancer, autoimmunity, and immunology conference

    Get PDF
    With the increased use of cancer immunotherapy, a number of immune-related adverse events (irAEs) are being identified. These irAEs can be compared with known autoimmune disorders in similar tissues, with important similarities and differences. Understanding the etiology of irAEs may bring to light concepts applicable to immune responses in cancer, autoimmunity, and infectious disease. This immunobiology is especially relevant to cancer patients with preexisting allogeneic transplants or autoimmune disease who are undergoing cancer immunotherapy. To address these facets of cancer immunotherapy, academic leaders from these various disciplines discussed current irAE basic and clinical research, irAE diagnosis and management, and the need for biomarkers and algorithms to identify individuals at risk for irAEs at a conference jointly sponsored by the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of Arthritis and Musculoskeletal and Skin Diseases in Bethesda, MD, on March 22–23, 2018. Mechanisms and models to characterize irAEs, standardize protocols, store biospecimens, and capture and analyze irAE data were also reviewed during the inaugural Cancer, Autoimmunity, and Immunology Conference. This summary highlights cancer immunotherapy–induced irAEs, the challenges ahead, and the opportunities for greater understanding of autoimmune conditions

    Examination of CD8 +

    No full text
    corecore