752 research outputs found

    Collective Flow and Mach Cones with Parton Transport

    Get PDF
    Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 232 \leftrightarrow 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η\eta from a microscopical picture.Comment: 7 pages, 8 figures, 1 table; to appear in the proceedings of Hot and Cold Baryonic Matter -- HCBM 201

    Extraction of shear viscosity in stationary states of relativistic particle systems

    Full text link
    Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η\eta. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η\eta for a pure gluonic system and find a good agreement with already published calculations.Comment: 17 pages, 7 figure

    Relativistic shock waves in viscous gluon matter

    Full text link
    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s\eta/s from zero to infinity. We show that an η/s\eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on timescales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.Comment: Version as published in PRL 103, 032301 (2009). 4 pages, 4 figure

    i-JEN: Visual Interactive Malaysia Crime News Retrieval System

    Full text link

    The impact of vascular burden on late-life depression.

    Get PDF
    Small vessel pathology and microvascular lesions are no longer considered as minor players in the fields of cognitive impairment and mood regulation. Although frequently found in cognitively intact elders, both neuroimaging and neuropathological data revealed the negative impact on cognitive performances of their presence within neocortical association areas, thalamus and basal ganglia. Unlike cognition, the relationship between these lesions and mood dysregulation is still a matter of intense debate. Early studies focusing on the role of macroinfarct location in the occurrence of post-stroke depression (PSD) led to conflicting data. Later on, the concept of vascular depression proposed a deleterious effect of subcortical lacunes and deep white matter demyelination on mood regulation in elders who experienced the first depressive episode. More recently, the chronic accumulation of lacunes in thalamus, basal ganglia and deep white matter has been considered as a strong correlate of PSD. We provide here a critical overview of neuroimaging and neuropathological sets of evidence regarding the affective repercussions of vascular burden in the aging brain and discuss their conceptual and methodological limitations. Based on these observations, we propose that the accumulation of small vascular and microvascular lesions constitutes a common neuropathological platform for both cognitive decline and depressive episodes in old age
    corecore