28 research outputs found

    HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo

    Get PDF
    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of tumour cells through activation of TRAIL-R1 and TRAIL-R2 death signalling receptors. Here, we describe the characterisation and activity of HGS-ETR1, the first fully human, agonistic TRAIL-R1 mAb that is being developed as an antitumour therapeutic agent. HGS-ETR1 showed specific binding to TRAIL-R1 receptor. HGS-ETR1 reduced the viability of multiple types of tumour cells in vitro, and induced activation of caspase 8, Bid, caspase 9, caspase 3, and cleavage of PARP, indicating activation of TRAIL-R1 alone was sufficient to induce both extrinsic and intrinsic apoptotic pathways. Treatment of cell lines in vitro with HGS-ETR1 enhanced the cytotoxicity of chemotherapeutic agents (camptothecin, cisplatin, carboplatin, or 5-fluorouracil) even in tumour cell lines that were not sensitive to HGS-ETR1 alone. In vivo administration of HGS-ETR1 resulted in rapid tumour regression or repression of tumour growth in pre-established colon, non-small-cell lung, and renal tumours in xenograft models. Combination of HGS-ETR1 with chemotherapeutic agents (topotecan, 5-fluorouracil, and irinotecan) in three independent colon cancer xenograft models resulted in an enhanced antitumour efficacy compared to either agent alone. Pharmacokinetic studies in the mouse following intravenous injection showed that HGS-ETR1 serum concentrations were biphasic with a terminal half-life of 6.9–8.7 days and a steady-state volume of distribution of approximately 60 ml kgβˆ’1. Clearance was 3.6–5.7 mlβˆ’1 dayβˆ’1 kgβˆ’1. These data suggest that HGS-ETR1 is a specific and potent antitumour agent with favourable pharmacokinetic characteristics and the potential to provide therapeutic benefit for a broad range of human malignancies

    Progressive resistance of BTK-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by acquisition of DcR2/TRAIL-R4 expression: resensitisation with chemotherapy

    Get PDF
    Β© 2003 Cancer Research UKApo2 ligand (Apo2L, also known as TRAIL) is a member of the tumour necrosis factor (TNF) family of cytokines that selectively induces the death of cancer cells, but not of normal cells. We observed that recombinant Apo2L/TRAIL was proapoptotic in early-passage BTK-143 osteogenic sarcoma cells, inducing 80% cell death during a 24 h treatment period. Apo2L/TRAIL-induced apoptosis was blocked by caspase inhibition. With increasing passage in culture, BTK-143 cells became progressively resistant to the apoptotic effects of Apo2L/TRAIL . RNA and flow cytometric analysis demonstrated that resistance to Apo2L/TRAIL was paralleled by progressive acquisition of the decoy receptor, DcR2. Blocking of DcR2 function with a specific anti-DcR2 antibody restored sensitivity to Apo2L/TRAIL in a dose-dependent manner. Importantly, treatment of resistant cells with the chemotherapeutic agents doxorubicin, cisplatin and etoposide reversed the resistance to Apo2L/TRAIL, which was associated with drug-induced upregulation of mRNA encoding the death receptors DR4 and DR5. BTK-143 cells thus represent a useful model system to investigate both the mechanisms of acquisition of resistance of tumour cells to Apo2L/TRAIL and the use of conventional drugs and novel agents to overcome resistance to Apo2L/TRAIL.S Bouralexis, D M Findlay, G J Atkins, A Labrinidis, S Hay & A Evdokio

    Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis

    Get PDF
    Synergy study with chemotherapeutic agents is a common inΒ vitro strategy in the search for effective cancer therapy. For non-chemotherapeutic agents, efficacious synergistic effects are uncommon. Here, we have examined two non-chemotherapeutic agents for synergistic effects: lovastatin and Tumor Necrosis Factor (TNF)-related apoptosis-inducing ligand (TRAIL) for synergistic effects; on three human malignant glioblastoma cell lines, M059K, M59J, and A172. Cells treated with lovastatin plus TRAIL for 48Β h showed 50% apoptotic cell death, whereas TRAIL alone (1,000Β ng/ml) did not, suggesting that lovastatin sensitized the glioblastoma cells to TRAIL attack. Cell cycle analysis indicated that lovastatin increased G0–G1 arrest in these cells. Annexin V study demonstrated that apoptosis was the predominant mode of cell death. We conclude that the combination of lovastatin and TRAIL enhances apoptosis synergistically. Moreover, lovastatin sensitized glioblastoma cells to TRAIL, suggesting a new strategy to treat glioblastoma

    Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence

    Get PDF
    The immune response to CSFV and the strategies of this virus to evade and suppress the pigs’ immune system are still poorly understood. Therefore, we investigated the transcriptional response in the tonsils, median retropharyngeal lymph node (MRLN), and spleen of pigs infected with CSFV strains of similar origin with high, moderate, and low virulence. Using a porcine spleen/intestinal cDNA microarray, expression levels in RNA pools prepared from infected tissue at 3Β dpi (three pigs per virus strain) were compared to levels in pools prepared from uninfected homologue tissues (nine pigs). A total of 44 genes were found to be differentially expressed. The genes were functionally clustered in six groups: innate and adaptive immune response, interferon-regulated genes, apoptosis, ubiquitin-mediated proteolysis, oxidative phosphorylation and cytoskeleton. Significant up-regulation of three IFN-Ξ³-induced genes in the MRLNs of pigs infected with the low virulence strain was the only clear qualitative difference in gene expression observed between the strains with high, moderate and low virulence. Real-time PCR analysis of four response genes in all individual samples largely confirmed the microarray data at 3Β dpi. Additional PCR analysis of infected tonsil, MRLN, and spleen samples collected at 7 and 10Β dpi indicated that the strong induction of expression of the antiviral response genes chemokine CXCL10 and 2′–5β€² oligoadenylate synthetase 2, and of the TNF-related apoptosis-inducing ligand (TRAIL) gene at 3Β dpi, decreased to lower levels at 7 and 10Β dpi. For the highly and moderately virulent strains, this decrease in antiviral and apoptotic gene expression coincided with higher levels of virus in these immune tissues

    Induction of cell death of human osteogenic sarcoma cells by zoledronic acid resembles anoikis

    No full text
    Copyright Β© 2003 Elsevier Inc. All rights reserved.The aim of this study was to investigate the cytotoxic activity of the third-generation nitrogen-containing bisphosphonate zoledronic acid (ZOL) as a single agent, and in combination with clinically relevant anticancer drugs, in a panel of human osteogenic sarcoma cell lines (HOS, BTK-143, MG-63, SJSA-1, G-292, and SAOS2). We found that ZOL, when used alone, reduced cell number in a dose- and time-dependent manner, due either to cell cycle arrest in S-phase or to the induction of apoptosis. In the sensitive HOS, BTK-143, and G-292 cell lines, genomic DNA fragmentation and morphological changes characteristic of apoptosis were evident, and cells became nonadherent. Induction of apoptosis in osteosarcoma cells by ZOL was associated with caspase activation. However, coaddition of the broad-spectrum caspase inhibitors, z-VAD-fmk, Boc-D-fmk, or the caspase-3-specific inhibitor z-DEVD fmk, failed to protect these cells from ZOL-induced apoptosis. Our data support a ZOL-specific induction of cell apoptosis that involves cell detachment (anoikis), and in which caspase activation occurs secondarily to, and is redundant as a mediator of cell death. The addition of geranylgeraniol, an intermediate of the mevalonate pathway, suppressed the ZOL-induced apoptosis, suggesting that the cytotoxic effects of ZOL in osteosarcoma cells were mediated by the mevalonate pathway. While treatment of osteosarcoma cells with the chemotherapeutic agents doxorubicin or etoposide decreased cell viability, combination of these agents with ZOL did not significantly augment apoptosis in any of the cell lines tested. These observations suggest that ZOL has direct effects on the proliferation and survival of osteosarcoma cells in vitro, which has implications for future therapy of osteosarcoma.A. Evdokiou, A. Labrinidis, S. Bouralexis, S. Hay and D. M. Findlayhttp://www.elsevier.com/wps/find/journaldescription.cws_home/525233/description#descriptio

    Enhanced apoptosis of soft tissue sarcoma cells with chemotherapy: A potential new approach using TRAIL

    No full text
    Soft tissue sarcomas are less responsive to conventional chemotherapy when compared to bone sarcomas. We investigated the possibility of enhancing the efficacy of chemotherapy by utilising the recently identified cytokine, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo2L) in combination with standard chemotherapeutic agents. Fresh human soft tissue sarcomas (rhabdomyosarcoma, fibrosarcoma, malignant fibrous histiocytoma) were obtained at biopsy and dispersed tumour cells were incubated in cell culture with standard cytotoxic agents, either as single agents or in combination with TRAIL. The chemotherapeutic agents were, at best, moderately effective, in terms of induction of cellular apoptosis, although the fibrosarcoma was completely unresponsive to all single agents. TRAIL alone had no effect on any sarcoma cell culture. In contrast, the addition of TRAIL and drug together produced a significant increase in sarcoma cell apoptosis, with TRAIL and doxorubicin the most effective combination.M Clayer, S Bouralexis, A Evdokiou, S Hay, GJ Atkins and DM Findla

    Calcitonin decreases the adherence and survival of HEK-293 cells by a caspase-independent mechanism

    No full text
    Copyright Β© 2002 by Society for EndocrinologyWe recently reported that calcitonin (CT) can profoundly inhibit the growth of HEK-293 cells transfected with the human calcitonin receptor (hCTR). We also obtained preliminary evidence that suggested a role for CT in cell survival, and in the present study we have investigated the pro-apoptotic action of CT, which we observe in conditions of low serum concentration. Under these conditions, we have found that CT treatment of HEK-293 cells stably transfected with the insert-negative form of the human CTR (HR12 cells) caused a time-dependent decrease in cell number associated with loss of cellular attachment. Loss of cellular adherence in CT-treated cultures caused programmed cell death, as shown by Annexin V staining of cells, failure of cells to exclude Trypan Blue dye, condensation and cleavage of nuclear DNA, and appearance of hypodiploid cells in fluorescence-activated cell sorting (FACS) analysis. The accumulation of non-adherent cells and cell death was concomitant with increased intracellular activity of caspase-3. However, inhibition of caspase activation in HR12 cells did not prevent CT-mediated loss of attachment and did not maintain the viability of non-adherent cells, indicating that caspase activation accompanied, but was probably not the cause of, the loss of cell viability. Neither the effects of CT on cell survival nor the activation of caspase-3 were observed in serum-replete conditions, suggesting that serum-derived factors provide protection of cells from CT-induced apoptosis. The inhibitory effects of CT on cell growth were found previously to be related to activation of Erk1/2 MAP kinase. In the present experiments, it was found that the Erk1/2 inhibitor, PD 98059, inhibited the CT-induced loss of cellular adherence and the consequent reduction in cell numbers. These results demonstrate that CT can negatively affect cell survival and they identify roles for cell adherence and MAP kinase activation in this process.DM Findlay, LJ Raggatt, S Bouralexis, S Hay, GJ Atkins, and A Evdokio

    Sensitivity of fresh isolates of soft tissue sarcoma, osteosarcoma and giant cell tumour cells to Apo2L/TRAIL and doxorubicin

    No full text
    Chemotherapy is an established treatment modality for bone sarcomas such as osteosarcoma (OS). However, the use of chemotherapy in high-grade soft tissue sarcomas remains controversial, with the most active chemotherapeutic agent, doxorubicin (DOX), reported to have a response rate of, at best only 34% and most studies reporting lower response rates. Apo2L/TRAIL is a member of the tumour necrosis factor (TNF) family of cytokines and induces death of tumour cells, but not normal cells. Its potent apoptotic activity is mediated through cell surface death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. We investigated the efficacy of Apo2L/TRAIL as a single agent, and in combination with clinically relevant chemotherapeutic drugs, in fresh isolates of primary malignant cells obtained from biopsy material. The data presented here demonstrate that, in a range of primary bone related tumours, as well as soft tissue sarcomas, chemotherapeutic agents were only moderately effective, in terms of induction of cell death. Apo2L/TRAIL alone had little or no effect on any bone-related tumour or sarcoma in culture. In contrast, the combination of Apo2L/TRAIL and chemotherapeutic drugs produced a significant increase in tumour cell death, with DOX and Apo2L/TRAIL proving to be the most effective combination. These data suggest the potential for Apo2L/TRAIL to increase the effectiveness of chemotherapeutic drugs in bone and soft tissue sarcomas, while perhaps concurrently allowing a reduction in the exposure to drugs such as DOX, and a consequent reduction in toxicity. The synergistic action between these two different classes of agents has yet to be tested in vivo but may prove clinically relevant in the treatment of this refractive class of malignancies
    corecore