3,051 research outputs found

    Anisotropic properties of MgB2 by torque magnetometry

    Full text link
    Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.Comment: 2 p.,2 Fig., submitted to Physica C (M2S-Rio proceedings); v2: 1 ref adde

    The Zero Age Main Sequence of WIMP burners

    Get PDF
    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence WIMP burners look much like protostars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically young OB stars found at the galactic centre with WIMP burners.Comment: 4 pages, 3 figs. Matches published versio

    Noether symmetries for two-dimensional charged particle motion

    Full text link
    We find the Noether point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries are composed of a quasi-invariance transformation, a time-dependent rotation and a time-dependent spatial translation. The associated electromagnetic field satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding three classes of electromagnetic fields compatible with Noether point symmetries. The corresponding Noether invariants are derived and interpreted

    Infrared properties of Mg1x_{1-x}Alx(_x(B1y_{1-y}Cy_{y})2_2 single crystals in the normal and superconducting state

    Full text link
    The reflectivity R(ω)R (\omega) of abab-oriented Mg1x_{1-x}Alx_x(B1y_{1-y }Cy_y)2_2 single crystals has been measured by means of infrared microspectroscopy for 1300<ω<170001300<\omega<17000 cm1^{-1}. An increase with doping of the scattering rates in the π\pi and σ\sigma bands is observed, being more pronounced in the C doped crystals. The σ\sigma-band plasma frequency also changes with doping due to the electron doping, while the π\pi-band one is almost unchanged. Moreover, a σσ\sigma\to\sigma interband excitation, predicted by theory, is observed at ωIB0.47\omega_{IB} \simeq 0.47 eV in the undoped sample, and shifts to lower energies with doping. By performing theoretical calculation of the doping dependence ωIB\omega_{IB}, the experimental observations can be explained with the increase with electron doping of the Fermi energy of the holes in the σ\sigma-band. On the other hand, the σ\sigma band density of states seems not to change substantially. This points towards a TcT_c reduction driven mainly by disorder, at least for the doping level studied here. The superconducting state has been also probed by infrared synchrotron radiation for 30<ω<15030<\omega<150 cm1^{-1} in one pure and one C-doped sample. In the undoped sample (TcT_c = 38.5 K) a signature of the π\pi-gap only is observed. At yy = 0.08 (TcT_c = 31.9 K), the presence of the contribution of the σ\sigma-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure

    AGAPE, an experiment to detect MACHO's in the direction of the Andromeda galaxy

    Get PDF
    The status of the Agape experiment to detect Machos in the direction of the andromeda galaxy is presented.Comment: 4 pages, 1 figure in a separate compressed, tarred, uuencoded uufile. In case ofproblem contact [email protected]

    Nonmagnetic impurity effects in MgB2_{2}

    Full text link
    We study nonmagnetic impurity effects in MgB2_{2} using the quasiclassical equations of superconductivity for a weak-coupling two-band model. Parameters in the model are fixed so as to reproduce experiments on MgB2_{2} as closely as possible. The quasiparticle density of states and the specific heat are calculated for various values of the interband impurity scattering. The density of states changes gradually from a two-gap structure into the conventional single-gap structure as the interband scattering increases. It is found that the excitation threshold is not a monotonic function of the interband scattering. Calculated results for the specific heat are in good agreements with experiments on samples after irradiation

    Vortex Imaging in the pi-Band of Magnesium Diboride

    Full text link
    We report scanning tunneling spectroscopy imaging of the vortex lattice in single crystalline MgB2. By tunneling parallel to the c-axis, a single superconducting gap (Delta = 2.2 meV) associated with the pi-band is observed. The vortices in the pi-band have a large core size compared to estimates based on Hc2, and show an absence of localized states in the core. Furthermore, superconductivity between the vortices is rapidly suppressed by an applied field. These results suggest that superconductivity in the pi-band is, at least partially, induced by the intrinsically superconducting sigma-band.Comment: 4 pages, 3 figure

    The management and integration of biomedical knowledge: Application in the health-e-child project (position paper)

    Get PDF
    The Health-e-Child project aims to develop an integrated healthcare platform for European paediatrics. In order to achieve a comprehensive view of children’s health, a complex integration of biomedical data, information, and knowledge is necessary. Ontologies will be used to formally define this domain knowledge and will form the basis for the medical knowledge management system. This paper introduces an innovative methodology for the vertical integration of biomedical knowledge. This approach will be largely clinician-centered and will enable the definition of ontology fragments, connections between them (semantic bridges) and enriched ontology fragments (views). The strategy for the specification and capture of fragments, bridges and views is outlined with preliminary examples demonstrated in the collection of biomedical information from hospital databases, biomedical ontologies, and biomedical public databases
    corecore