77 research outputs found

    How does the Smaller Alignment Index (SALI) distinguish order from chaos?

    Full text link
    The ability of the Smaller Alignment Index (SALI) to distinguish chaotic from ordered motion, has been demonstrated recently in several publications.\cite{Sk01,GRACM} Basically it is observed that in chaotic regions the SALI goes to zero very rapidly, while it fluctuates around a nonzero value in ordered regions. In this paper, we make a first step forward explaining these results by studying in detail the evolution of small deviations from regular orbits lying on the invariant tori of an {\bf integrable} 2D Hamiltonian system. We show that, in general, any two initial deviation vectors will eventually fall on the ``tangent space'' of the torus, pointing in different directions due to the different dynamics of the 2 integrals of motion, which means that the SALI (or the smaller angle between these vectors) will oscillate away from zero for all time.Comment: To appear in Progress of Theoretical Physics Supplemen

    Kovalevski exponents and integrability properties in class A homogeneous cosmological models

    Get PDF
    Qualitative approach to homogeneous anisotropic Bianchi class A models in terms of dynamical systems reveals a hierarchy of invariant manifolds. By calculating the Kovalevski Exponents according to Adler - van Moerbecke method we discuss how algebraic integrability property is distributed in this class of models. In particular we find that algebraic nonintegrability of vacuum Bianchi VII_0 model is inherited by more general Bianchi VIII and Bianchi IX vacuum types. Matter terms (cosmological constant, dust and radiation) in the Einstein equations typically generate irrational or complex Kovalevski exponents in class A homogeneous models thus introducing an element of nonintegrability even though the respective vacuum models are integrable.Comment: arxiv version is already officia

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    Time--Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem

    Full text link
    We study chaotic orbits of conservative low--dimensional maps and present numerical results showing that the probability density functions (pdfs) of the sum of NN iterates in the large NN limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent is small, long--lasting quasi--stationary states (QSS) are found, whose pdfs appear to converge to qq--Gaussians associated with nonextensive statistical mechanics. More generally, however, as NN increases, the pdfs describe a sequence of QSS that pass from a qq--Gaussian to an exponential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes more uniformly ergodic.Comment: 15 pages, 14 figures, accepted for publication as a Regular Paper in the International Journal of Bifurcation and Chaos, on Jun 21, 201

    Energy localization on q-tori, long term stability and the interpretation of FPU recurrences

    Full text link
    We focus on two approaches that have been proposed in recent years for the explanation of the so-called FPU paradox, i.e. the persistence of energy localization in the `low-q' Fourier modes of Fermi-Pasta-Ulam nonlinear lattices, preventing equipartition among all modes at low energies. In the first approach, a low-frequency fraction of the spectrum is initially excited leading to the formation of `natural packets' exhibiting exponential stability, while in the second, emphasis is placed on the existence of `q-breathers', i.e periodic continuations of the linear modes of the lattice, which are exponentially localized in Fourier space. Following ideas of the latter, we introduce in this paper the concept of `q-tori' representing exponentially localized solutions on low-dimensional tori and use their stability properties to reconcile these two approaches and provide a more complete explanation of the FPU paradox.Comment: 38 pages, 7 figure

    A numerical study of infinitely renormalizable area-preserving maps

    Full text link
    It has been shown in (Gaidashev et al, 2010) and (Gaidashev et al, 2011) that infinitely renormalizable area-preserving maps admit invariant Cantor sets with a maximal Lyapunov exponent equal to zero. Furthermore, the dynamics on these Cantor sets for any two infinitely renormalizable maps is conjugated by a transformation that extends to a differentiable function whose derivative is Holder continuous of exponent alpha>0. In this paper we investigate numerically the specific value of alpha. We also present numerical evidence that the normalized derivative cocycle with the base dynamics in the Cantor set is ergodic. Finally, we compute renormalization eigenvalues to a high accuracy to support a conjecture that the renormalization spectrum is real

    Complex statistics and diffusion in nonlinear disordered particle chains.

    Get PDF
    We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 10(9), our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times
    • 

    corecore