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Analytical and numerical methods of nonlinear dynamics are used to study some simple periodic
solutions (or orbits) of differential equation models of the beam-beam interaction in one and two
spatial dimensions. These periodic orbits are called synchronized because their frequencies Wi =
nJmi, i = 1, 2, are very nearly equal to the unperturbed ("betatron") frequencies, or "tunes," Qi' in
the horizontal and vertical directions (ni' mi are small positive integers). They correspond to some of
the lowest-order resonances of the system and are experimentally important because, when they come
close enough to the origin of phase space, they can carry particles away from their ideal path, causing
serious beam blowup effects. In this paper, we obtain such synchronized periodic orbits by numerical
as well as analytical techniques and determine their stability properties by perturbative methods, for
large ranges of parameter values and initial conditions. Our results also demonstrate interesting
qualitative and quantitative similarities between differential and difference equation models of
colliding proton beams in two spatial dimensions.

1. INTRODUCTION

In recent years, there has been an increased interest in the applications of the
methods and techniques of nonlinear dynamics to the problem of colliding
particle beams in high-energy accelerators. 1

-
3 One of the most important aspects

of this problem is the question of stability of particle orbits, since the two beams
repeatedly intersect, imparting on one another an instantaneous, electromagnetic
"kick," referred to here as the beam-beam interaction. These kicks are caused by
strongly nonlinear forces, which, since the beams often have to intersect as many
as 1011 times (!) before an interesting "collision" is observed, can have disastrous
effects, e.g., severe beam blowup and particle loss to the walls of the machine.

The dynamics of the beam-beam interaction is governed by resonances 1
,2 (or

simple periodic orbits), which can "trap" particles in their stability region and

t On leave from the Department of Mathematics and Computer Science, Clarkson University,
Potsdam, NY 13676
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take them dangerously far from the ideal beam path (passing by the origin of the
phase space of the system). The main objective here, therefore, is to locate these
resonances and study their stability regions, so as to be able to estimate the
phase-space distances to which they may take particles away from the origin.4-6

One way to approach this problem is to consider beam-beam interaction
models in the so-called weak-strong approximation, in which the particles of one
non-self-interacting (weak) beam are taken to collide head-on, with a bunched
strong beam, whose (cumulative) electromagnetic effect can be described by the
Hamiltonian1-6

(1)

Here, x and yare the horizontal and vertical displacements of the weak-beam
particle from its ideal (circular) path, Q1' Q2 are the so-called machine tunes, or
betatron (unperturbed) oscillation frequencies, B measures the strength of the
beam-beam interaction potential Vex, y), and D2Jt(t) is the 2.7l'-periodic delta
function representing the extremely short duration of the interaction:1-6

00 1 00

b27r(t) = n~oo b(t - 21rn) =21r n~oo cos nt. (2)

(3)

The Hamiltonian formulation of the problem, Eq. (1), implies that we are
dealing with the conservative, proton beam case,4,S even though radiation
damping can always be included in our models6 and treated by techniques similar
to the ones described in this paper. Using now for our beam-beam interaction
force an expression derived for a strong beam with a Gaussian cylindrically
symmetric charge distribution,7

! av=! av=2 1 - exp [-(x
2
+ y2)/2] =1 _ x

2+ y2 + O(lx2+ y212),
X ax y ay x2+ y2 4

we arrive, from all of the above, at the equations of motion

2 B (1 )[ x(x
2+ y2) ]i + Q1X + 4.7l' 2+ cos t + · .. x - 4· + · .. = 0,

2 B(1 )[ Y(X
2

+y2) ]Y+ Q2Y + 4.7l' 2+ cos t + · .. y - 4 + · .. = 0.

(4a)

(4b)

In this paper, we shall be interested in obtaining analytically, as well as
numerically, some fundamental periodic solutions of Eq. (4), in one and two
spatial dimensions, with frequencies Wi = ni/mi == Qi' i = 1, 2 (ni' mi are positive
integers). These so-called synchronized periodic orbits are important, because
they correspond to some of the lowest-order resonances1,2,S of the system. When
they are stable (with respect to small perturbations in their initial conditions),
they turn out to have large regions around them where the solutions of Eq. (4)
behave in a more-or-Iess predictable way: In the one-dimensional case [x(t) == 0,
say, for all t, in Eq. (4)], most orbits are bounded by invariant tori l

-
4 for all time,

while, when both x and yare involved, significant blowup phenomena are
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(5)

observed as orbits "diffuse," through a network of resonances, to more and more
distant regions of phase space.S,6

We have recently introduced a novel numerical technique for finding such
synchronized periodic orbits and have used perturbative methods to study them
analytically in periodically driven nonlinear oscillators.8 Here, these methods are
applied first to a differential equation like Eq. (4b), in one spatial dimension,9

d 2y
dt2 + ay + E cos 2t(y - by3) =0,

for which synchronized periodic solutions are discovered numerically in Section 2,
with va == 1, 1/2, b = 1, and 0 < £ :5 1. O. These solutions are also obtained
analytically by the method of generalized averaging10 (to order £2) in Section 3.
The results of Section 3 are then used in a stability analysis of these solutions,
carried out here with the aid of multiple scaling perturbation techniques. 11

Excellent agreement is found between theoretical predictions and numerical
computations, over large ranges of parameter values and initial conditions.

The main methods and results of this paper are not affected by the precise form
of the parametric driving force in our equations, as long as it is periodic in t.
Thus, the addition of more cosines in the coefficient of the beam-beam force in
Eq. (5), cf. Eq. (4), is seen not to change our analysis and its main outcome
significantly. However, in an effort to make our results of greater qualitative and
quantitative relevance to the beam-beam interaction problem, we have in Section
4, extended and applied our methods to the more realistic two-dimensional
system

i + Qix + EO + cos t + cos 2t + cos 3t)[x - x(X
2
: y2)] = 0, (6a)

ji + Q~y + EO + cos t + cos 2t + cos 3t)[y _ y(x
2
: y2)] =O. (6b)

Cf. Eq. (4) above. Extending the techniques of generalized averaging, we
obtained approximate formulas for curves in the Q1' £ and Q2' £ planes, with
Q1 == 3/4, Q2 == 1/2, along which Eqs. (6) possess synchronized periodic solutions
with periods Ii = 81C/3 and T2 = 41C, respectively (Le., overall period T = 81C).
These formulas were tested numerically and found to be quite accurate for
0<E~0.2.

The particular choice of the unperturbed frequencies Q1 and Q2 mentioned
above (Le., Q1 == 3/4, Q2 == 1/2) yields, of course, a whole multiplet of resonances

m1(~) + m2(!) = m1Q1 + m2Q2 = n, (7)

(m1' m2, n integers; m1, n nonnegative), which can now be examined in greater
detail using the results of this paper. Clearly, the lowest-order ones among them
(for which m1, m2 are smallest in magnitude) are expected to be the most
important. 1,2,4,S

We have started such an analysis here by taking m2 = 0, ml = 4 (n = 3), a
familiar case from some of our earlier investigations.4-6 The pictures we obtained
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of orbits intersecting the x, i (and y, y) planes at integer multiples of 2Tl bear a
striking resemblance to similar ones produced by iterating mapping models of the
beam-beam interaction4

,5! Thus, further comparisons between differential and
difference equation studies of colliding beams are currently under investigation,
and a more comprehensive resonance analysis of this problem, using synchron
ized periodic orbits, will appear in future publications.

2. A NUMERICAL INVESTIGATION OF PERIODIC ORBITS

In this section, we apply a novel numerical technique for finding periodic
solutions of differential equations of the form

d2y
dt2 + ay + EP(Qt)F(y) = 0, P(Qt) = P(Qt + 2Jr), (8)

to the nonlinear Mathieu equation

d 2y
dt2+ ay + E cos 2t(y - by3) =0, b ;:::0, (9)

whose connection to the problem of colliding beams has been discussed in the
introduction, as well as in Refs. 1 and 2. The parameter E is taken to be small,
but good agreement between numerical and analytical results is generally
obtained for lEI ~ 1.0.

As is the case with the linear Mathieu equation12 the cos 2t in Eq. (9) is the
major resonance-producing term to lowest order in a perturbation approach in
powers of E. Near these lowest-order resonances, the solutions oscillate with
unperturbed frequency squared,

where
p =0, !, 1, ~, 2, ....

(lOa)

(lOb)

Using our so called indicatrix method, we shall determine numerically the
values of the parameters a, E at which periodic orbits of Eq. (9) with frequency
p =va pass by a specified initial condition, e.g., [y(to), y(to)] = (0.5,0).

Clearly, for E= 0, all points [y(to), y(to)] can serve as initial conditions for
periodic orbits with frequency p == va. However, for E =1= 0, the set of points
[y(to+ T), y(to+ T)] with T = 2Jr/p form a closed curve parametrized by
to E [0, Jr] that mayor may not pass by our specified initial condition (0.5,0). This
closed curve is called the indicatrix and is plotted here in Fig. 1a for a == 1/4 in
Eq. (9) (and b = 1).

By varying slightly a and E, we obtain the desired periodic orbits when the
indicatrix is observed to pass by our initial condition at some values of to. This
can happen, of course, for more than one value of to E [0, Jr]; see Figs. Ib and lc,
where to =°and Jr /2, respectively.

We consider here the cases p = 1 and p = 1/2 (other values of p can be similarly
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FIGURE 1 Indicatrix plots of Eq. (9) for £ = 0.6, b = 1, and to E [0, .1t'] for (a) a = 0.251213, (b)
a = 0.2359465 [note: (0.5,0) at to = 0], (c) a = 0.2124235 [(0.5, 0) at to = .1t'/2].

treated), and we study in this way the existence of these so-called synchronized
periodic solutions with periods T = 2Jr, 4Jr, respectively. We find, with our
indicatrix method, two curves in the a, e plane corresponding to periodic orbits
with to = 0, Jr12; see Fig. 2.

To examine these periodic orbits in more detail we use the Poincare map
associated with Eq. (9), at the parameter values suggested by the indicatrix
method. In fact, using the Poincare map one can even determine the stability
properties of these periodic solutions under small perturbations in the initial
conditions. We illustrate this below for the cases p = 1, 1/2 (or a == 1, 1/4).

Let us consider the Poincare map, or the y, y surface of section ~to =
{[y(tn ), y(tn )], tn = to + nJr}. We know from the Poincare-Birkhoff fixed-point
theorem13

,14 that for e =1= 0 the invariant curves corresponding to periodic orbits of
the E = 0 case break up into an even number of periodic orbits, half of which are
stable (elliptic) and half unstable (hyperbolic).

On the other hand, it is also possible for a single periodic orbit to appear on a
surface of section after a bifurcation from an orbit with half its period, at some
value of a parameter of the problem. 13

,15 Upon such an event, the "mother" orbit
destabilizes, while the new orbit is "born" (linearly) stable to small changes in its
y(to) and y(to).

Integrating Eq. (9) numerically for a == 1 (b = 1) and several initial conditions
and plotting the intersections of orbits on the y, y surface of section of Fig. 3, we
find that the latter case occurs for this choice of parameters: In other words, our
indicatrix method has picked a single period-2Jr orbit, intersecting the y axis at
(-0·5, 0) and (0.5,0) (see Fig. 3a for to = 0 and Fig. 3b for to = Jr/2). This orbit
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FIGURE 4 Surfaces of section for Eq. (9) for E = 0.6, b = 1 and (a) a = 0.2359465, to = 0 (the
unstable period-4.1t' orbit marked by x), (b) a = 0.212435, to = .1t'/2 (the stable period-4.1t' orbit, marked
by 0).

has actually bifurcated at E = 0 out of the origin, which for E > 0 becomes an
(unstable) orbit of period n.

In the case p = 1/2 (a == 1/4), however (where the origin is a stable period-.1l'
orbit), there are two periodic orbits of period 4.7l, which fall within the class
described by Birkhoff's theorem; i.e., one of them is unstable (see Fig. 4a at
to = 0) and the other stable (see Fig. 4b at to = n/2).

3. SYNCHRONIZED PERIODIC ORBITS: A THEORETICAL STUDY
IN ONE DIMENSION

Using the method of generalized averaging,lO we can derive first- and second
order, (in E) analytical formulas for synchronized periodic solutions of the
nonlinear Mathieu equation

d2y
dt2 + ay + I:: cos 2t(y - by3) =0, b ;::= 0 (11)

and compare them with the numerical results obtained by the indicatrix method
of Section 2.
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Introducing the new variables

y=yy!b, (12)

we first rewrite Eq. (11) as

d2 y
dt2 + w2y + E cos 2t(Y - y 3

) = O. (13)

When e = 0, the general solution of Eq. (13) is

Y(t) = a cos (wt + cj», Y(t) = -aw sin (wt + cj», a, cj> const. (14)

For e *0, but "small enough," we shall allow a and cj> to be unknown functions
of tin Eq. (14), which are to be determined below, to second order in e.

Differentiating the first equation of Eq. (14) and equating with the second and
differentiating the second of Eq. (14) and substituting into Eq. (13), we get a
system of equations that we solve for a(t) and cP(t) to obtain

d [a(t)] e [ a(t)(sin 1JJl + sin 1JJ2) ]
dt cj>(t) = 4w cos 1JJl + cos 1JJ2 + 2 cos 2t

_ ea
2
(t) [ a(t)(2 sin 1JJl + 2 sin 1JJ2 + sin 1JJ3 + sin 1JJ4) ] (15a)

16w 4 cos 1JJl + 4 cos 1JJ2 + cos 1JJ3 + cos 1JJ4 + 6 cos 2t '

where the cos3
( wt + cj» term has been expanded and

(16a)

(16b)

(15b)

= [a(to)] =[A]
x cj>(to) <P '

[
a(t)]

z = cj>(t) ,

!(z, t) = l(x) +!(x, t),

and writing

1JJl = 2(w + l)t + 2cj>(t), 1JJ2 = 2(w - l)t + 2cj>(t),

1JJ3 = 2(2w + l)t + 4cj>(t), 1JJ4 = 2(2w - l)t + 4cj>(t).

Now we attempt to solve the nonlinear Eq. (15a) with Eq. (15b) by the
generalized averaging method as follows:

Casting the original Eq. (15) in the form

dz
dt = e!(z, t),

(17a)
dx -
-= eF(x)
dt

where l(x) contains the constant terms and terms of smallest frequency and
!(x, t) the terms of higher frequency, one associates with Eq. (16) the following
reduced system:

with
z =x + eG(x, t). (17b)

Expanding F(x) and G(x, t) as series in e,

F(x) = F1(x) + eF2(x) + · · · + em-1Pm(x) + . · · (18a)

G(x, t) = G1(x, t) + eG2(x, t) + · · · + em-1Gm(x, t) + · . · (18b)
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and substituting from Eq. (17b) into Eq. (16) using Eqs. (17a) and (18) yields
upon equating like powers of e:

and

- alI-F2(x) = - f(x, t) dt, ...ax (19a)

G1(x, t) = Il(x, t) dt,

~-

G2(x, t) = I [:~ II(X, t) dt] dt + :~ I [J lex, t) dt] dt (19b)

-{I [J :: (x, t) dt] dt }l, ···
Note that Eq. (15) is split in such a way that small frequency components occur

at w == 1, 1/2. This means that we can get periodic orbits with period 2Jr, 4Jr
already by the first approximation. To find periodic orbits with period greater
than 4Jr, we need to go to second- or higher-order approximations. The
amplitude and phase of these orbits are written in the form of e-series expansions
as follows:

a(t) = A + eGla(x, t) + e2G2a(x, t) + O(e3
)

q>(t) = tI> + eGlep(x, t) + e2G2ep (x, t) + O(e3
)

(20a)

(20b)

where

G- ( ) = [q1a(X, t)]
1 x, t G ( )'lep x, t

G- ( ) = [ G2a (x, t)]
2 x, t - ,

G2ep (X, t)

cf. Eq. (16), and Gl(x, t), G2(x, t) are to be solved from Eq. (19b) to obtain the
periodic solutions of Eq. (13) to order e, e2

, etc.
We present here the analytical expressions for such periodic orbits with period

2Jr, up to second order in e. Observe that when w == 1, the terms of smallest
frequency are

- - [fl(x, t)]
F1(x) =f(x, t) = heX, t)

=~ [A sin (2(w -l)t + 2tI»] -A
2

[A sin (2(w -l)t + 2tI»] (21a)
4w cos(2(w-1)t+2tI» 8w 2cos(2(w-1)t+2tI» '

and those of higher frequency:

- [ll(x, t)] 1 [ A sin '1'1 ]
f(x, t) = A(x, t) =4£1) cos 'P

1
+ 2 cos 2t

-A2 [ A(2 sin '1'1 + sin '1'3 + sin '1'4) ]
16£1) 4 cos '1'1 + cos 'P3+ cos '1'4 + 6 cos 2t' (21b)
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W1 = 2(m + l)t + 2<1>, W3 = 2(2m + l)t + 4<1>, and W4 = 2(2m -l)t + 4<1>. (21c)

To derive the reduced system [Eq. (17a)] to second approximation, we need also
to calculate the function F2(x) from Eq. (19a), using Eqs. (21b) and (21c). This
gives

F x _~ [4A sin (4(m -l)t + 4<1»]
zC ) - 128m2 4 cos (4(m -1)t + 4<1»

-A
4

[ 3A sin (4(m -l)t + 4<1» ] (22)
512m

2 (6) .
2m -1 + 12 cos (4(m -l)t + 4<1»

Using Eqs. (21a), (22), and (18a), we write our reduced system [Eq. (17a)] in the
form

(23)

(27)

To satisfy the condition ~ =0, we make the corresponding contributions of

F1(x) and F2(x) vanish by choosing

2(m - l)t + 2<1> = kJt' (k = 0, 1 for 2Jt'-periodic orbits). (24)

Now the second equation of Eq. (23) [with m - 1 = d<l>/dt, cf. Eq. (24)] yields

e ( k+12k e
2
A

2
[ A

2
( 6)]m = 1 + 4m [-1) + A (-1) ] + 32m2 -1 + 16 12 + 2m _ l' (25)

which provides us with approximate expressions for the curves in the (a, e) plane
obtained numerically in Section 2.

The to = 0 (k = 0) curve is

2 2A2
2 e 2 e 22 e 32 3

m = 1-2(1- A ) - 16 (1- A ) -1"6 (1- 2A ) + O(e ), (26a)

while for k = 1 (to = Jt' /2) the curve is

2 2A2
m2= 1 + ~ (1- A 2) - ~ (1- A 2)2 - _e- (1- ~A2) + 0(e3). (26b)

2 16 16 2

Equations (26a) and (26b) are already in very good agreement with the curves
computed directly by the indicatrix method; see Figs. 5a and 2a.

In order to determine the amplitude and the phase of these 2Jt'-periodic orbits
to obtain an approximate expression for the solution yet), we need to calculate
the functions G1(x, t) and G2(x, t). Since the calculations quickly become very
complicated, we will determine yet) only up to 0(e2

). By substituting from Eq.
(21b) into Eq. (19b) we obtain

G- ( ) = .[ qla(X, t)]
1 x, t G ( )'

14> X, t
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FIGURE 5 Comparison between the analytical formulas [Eqs. (26) and (30)] and the numerical
results of Fig. 2.

where
_ -A A 3

G1a(x, t) = 16 cos (4t + kJr) + 16 [i cos (6t + Zk:rr)

+! cos (4t + kn) +! cos (2t + 2kn)] (28a)

and

Gltp(x, t) = n,[sin (4t + k:rr) + 4 sin Zt] - ~ [i sin (6t + Zk:rr) + sin (4t + k:rr)

+ ! sin (2t + 2kn) + 3 sin 2t]. (28b)

Substituting from Eq. (28) into Eq. (20) and using Eq. (24), we obtain the
following analytical expression for Y(t) from Eq. (14):

yet) =A cos (t + kz:rr) + £{-~ [cos (St + ~k:rr) + Zcos (3t + k;)

+ Z cos (t - kZ:rr) ] +:: [~cos (7t + ~k:rr) + 3 cos (St + ~k:rr)

+ Z cos (3t + ~k:rr) + S cos (3t + kZ:rr) - 3 cos (t - kZ:rr) ]} + 0(£2). (Z9)
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(30b)

In the case 0) == 1/2, using a similar analysis, we also develop the expansions to
order E

2 and obtain the following results for the periodic orbits of period 4.1t':

2 1 E 2 2[ 1 A
2

65 4] 3
0) =-+-A -E ---+_.A +O(E) (30a)

4 8 6 2 256 '

2 1 E 2 2[ 1 A
2

65 4] 3
0) =4- 8A - E 6- 2 +256 A + O(E ),

and

Y(t} =A cosG+ k
2
1r) + £{~~ [2 cos Gt + ~ k1r) + 3cos Gt + k;)

- 3 cos Gt - k;) - 6 cos G-3~1r) ] +:: [3 cos Gt + ~ k1r )

+ 12 cos Gt + ~ k1r) + 14 cos Gt + 7) -6 cos Gt _ k;)

- 36 cos G-~ k1r)]} + 0(£2}. (31)

Equations (30a) and (30b) agree very well with the numerical results of Section 2,
see Figs 5b and 2b up to E ~ 0.2. Unlike the 0) == 1 case, however, the agreement
of Eq. (30a) is not as good for E ~ 0.2, owing to the asymmetric twist of the
right-hand-side curve, which would require higher-order terms in Eq. (30a) for a
more accurate description.

We now use the above results to obtain by second-order perturbation methods
the boundaries of the instability regions of synchronized periodic solutions of Eq.
(13) in the 0)2, E plane for 0 < E ~ 1, writing the unperturbed frequency in the
form

p = 0, !, 1, ~, 2, .... (32)

We study here the cases p = 1 and p = 1/2, looking for uniformly valid (in t)
solutions of Eq. (13), linearized about its synchronized periodic solution yet); cf.
Eqs. (29) and (31) above. Thus, we set

yet) = yet) + z(t), z(t) small,

and linearize Eq. (13), keeping terms up to first order in z(t) to obtain

d2z ~
dt2 + w2z(t} + £ cos 2t(1 - 3y2(t}}Z(t} =0,

(33)

(34)

which is a Hill's equation in Z(t).16
Using the standard "multiple-scaling" techniques of perturbation theory,9,11 we

write the solution of Eq. (34) as a series expansion in E:

where
t= Et.

(35)

(36)
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(37a)

(37b)

In the case p = 1 with k = 0 and A = 0.5, substituting from Eqs. (32) and (35)
(3.25) into Eq. (34), using Eq. (29), and equating like powers of £, we obtain
linear equations for F;(t, t), i = 0, 1, 2, ... , which are solved successively at
every order, making use of the results of previous orders. Imposing the usual
requirement that no inhomogeneous terms arise on the rhs of these equations
having the same frequency as that of the homogeneous solutions leads to the
following expressions for the boundaries of the instability regions in the (£, ( 2

)

plane (see Ref. 9 for details):

2 1 3 2w_ == 1- - £ +- £. left branch,
8 256·

2 1 9 2
W == 1 +- £ - -- £. right branch.

+ 2 1124·

These expressions are plotted in Fig. 6a and are in agreement with results of
Section 2 (see, e.g., Fig. 3a, where the values a = w2 = 0.80674575, £ = 0.5 lie
outside the instability region of Fig. 6a).

0.8

t 0.6

E
0.4

0.2

0.0
0.8 1.0 21.2 1.4

0.8 lIJ~

t 0.6 Unstable

£
0.4

Stable
0.2

0.0
0.1 0.2 0.3

lIJ2-
FIGURE 6 (a) Instability region (Eq. (37)] for Eq. (13) for the 2.7r-periodic solution at to = 0, with
y(O) = 0.5, y(O) = O. (b) Instability region [Eq. (38)] for Eq. (13) for 4.7r-periodic solution at to = 0 and
the same initial condition as in (a).
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By a similar analysis for the case n = 1/2, we obtained the following
expressions:

Z _1 3 2077 Z

£0_ = 4: - 32 E - 12,288 E: left branch,

Z _1 2 901 Z
£0 + = 4: +32 E - 12,288 E: right branch.

(38a)

(38b)

Again, these expressions are plotted in Fig. 6b and are in agreement with the
results of Section 2 (see, e.g., Fig. 4a, where the values a = w Z = 0.2359465,
E =0.6 lie inside the instability region of Fig. 6b).

We have also checked the predictions of Eqs. (37) and (38) displayed
graphically in Figs. 6a and 6b against numerical computations in many other cases
and have found very satisfactory agreement for several values of a, E (or W

Z
, E)

beyond the ones mentioned above. Thus, having demonstrated the validity and
usefulness of these methods in the one-dimensional case, we now proceed to
apply them in the next section to the case of two coupled nonlinear oscillators.

4. SYNCHRONIZED PERIODIC ORBITS IN TWO DIMENSIONS

In this section, we make the first steps towards applying the methods of this paper
to study synchronized periodic orbits of two coupled differential equations of the
form of Eq. (8):

dZx
dtZ+ a1x + EP(t)F1(x, y) = 0

dZy
dtZ + azy + EP(t)F2(x, y) = 0,

(39)

(41)

where again pet) = pet + 2.1l'), F;(x, y), i = 1,2, are nonlinear functions of x, y,
and E is a small parameter.

As an application to the two-dimensional beam-beam interaction problem, we
will, in fact, take pet) in Eq. (39) to be the 2.1l'-periodic delta function 1-6

1 00

P(t) = D27r(t) = 2:Jr n~"" cos nt (40)

and let x and y denote the horizontal and vertical deflections of a weak beam,
colliding head on with a bunched strong beam and experiencing, at every
collision, an electromagnetic kick of the form7

! F ( ) =! F ( ) =2 1 - exp [-(x
2
+ y2)/2]

1 x, Y 2 x, Y 2 2 •
X Y X +y

Keeping the leading terms in an expansion of Eq. (41) about the orIgIn
(x = y =0) and the first three cosine terms in Eq. (40) we look for synchronized
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periodic solutions of the system

(
x(Xz + yZ))

X + Qix + E(! + cos t + cos 2t + cos 3t) x - 4 = 0

(
y(XZ + yZ))

ji + QiY + E(! + cos t + cos 2t + cos 3t) y - 4 = 0,

(42a)

(42b)

where Ql' Qz are the machine tunes in the x and y direction, respectively, and £

is a measure of the strength of the beam-beam interaction.
When £ = 0, the general solutions of Eq. (42) are

x = at cos (Qtt + <Pt), i = -atQt sin (Qtt + q>t),

y = az cos (Qzt + q>z), y = -azQz sin (Qzt + q>z),

(43a)

(43b)

where at, az, q>t, q>z are constants determined by the initial conditions. However,
for £ '* 0, we shall let ai(t) and q>i(t) be functions of time and proceed to
determine them by the methods of generalized averaging, described in Section 3.

To this end, we differentiate x and equate with i in Eq. (43a) and then
differentiate i and substitute into Eq. (42a). Doing the same for y, we get a
system of equations, which we solve for ai(t), ePi(t), i = 1, 2 to obtain

at(t) atSt aiR t ala~1;

d az(t) £ azSz £ a~Rz £ aiazTz
(44)- -

dt q>l(t) 4 S3 64 aiR3 64 a~13

q>z(t) S4 a~R4 ai14

where the Si' Ri, 1';, i = 1,2,3,4, are sums of trigonometric functions with
arguments

1/Jj,k == (2Qj - k)t + 2q>j' j = 1, 2; k = 0, ± 1, ±2, ±3 (45a)

(45c)

(45d)

(45b)

j= 1,2

j, I = 1, 2, I '* j

(as well as cos t, cos 2t and cos 3t), coming from the expansions of cos3 (Ql t + q>t),
cos3 (Qzt + q>z), etc.:

1 3 1 3

Sj = Q. ? sin 1J!j,k, Sj+2 = Q. ? (cos 1J!j,k + cos kt), j = 1, 2
]k--3 ]k--3

Rj = ~j kt3 [2 sin 1J!j,k + sin (1J!j,O + 1J!j,k)]

1 3

Rj+2 = Qj k~3 [4 cos 1J!j,k + cos (1J!j,O + 1J!j,k) + 3 cos kt]

1 3

~ = Qj k~3 [2 sin 1J!j,k + sin (1J!j,O ± 1J!t,k)]

1 3

~+2 = Qj k~3 [2 cos 1J!1,k + 2 cos 1J!2,k

+ cos (1/Jj,O + 1/Jt,k) + 2 cos kt].
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Equations (44), with (45), can now be solved by an extension of the techniques
of generalized averaging as follows: Write first Eq. (44) in the form

dz
dt = e!(z, t), (46a)

(with [. · ·r denoting transpose), and let

fez, t) = leu) + feu, t),

u == [al(tO), a2(tO), CfJl(tO), CfJ2(tO)r = [AI' A 2, <1>1' <l>2Y, (46b)

where the vector functions leu) and feu, t) contain the terms of smallest
frequency (plus constants) and the terms of higher frequency, respectively. As in
Section 3, we associate with Eq. (46) the reduced system

where

du 
-= eF(u)
dt '

(47a)

z = u + eG(u, t). (47b)

Cf. Eq. (17b), expand F(u), G(u, t) in powers of e,

F(u) = F1(u) + eF2(u) + · · · + em
-

1Fm (u) + · · · (48a)

G(u, t) = G1(u, t) + eG2(u, t) + · · · + em
-

1Gm (u, t) + · · · (48b)

and substitute from Eq. (48) into Eq. (47), using Eq. (46) (4.8), to obtain, upon
equating like powers of e,

- - af J-F1(u) =feu, t), F2(u) = au feu, t) dt, · . · ·

G1(u, t) = Jfeu, t) dt

~ -

G2(u, t) = J[:~ Jfeu, t) dtJdt + :~J[J feu, t) dtJdt

-f{J [J :~ (u, t) dtJ dt}, · · ·

(49a)

(49b)

cf. Eq. (19). Moreover, the approximate formulas for the amplitudes and phases
of solutions are written as

with

- 2 - 3 }ai(t) =Ai + eGlalu, t) + e G2ai(u, t) + O(e) . = 1 2
- 2 - 3 l ,¢i(t) = <l>i + eGicfJi(u, t) + e G2cfJlu, t) + O(E )

(50)

k= 1, 2.

Now, Eq. (44) [with Eq. (45)] is split in such a way that small-frequency
components occur at

Qi == 1/2, 1, 3/2, 1/4, 3/4, i = 1,2, (51)
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and
Ql ± Q2 == 1/2, 1, 3/2

and yield terms that contribute to order e, cf. Eq. (45). Thus, choosing

(52)

(53)

<P2

and inserting Eq. (50) into Eq. (44), we obtain the reduced system

Al 0 (Atl Ql) sin ('lJJl, 1 + 'lJJl,2)

A 2 • A~ [2 . . 2 ]
A 2 Q2 sm 'l/J2,l Q2 sm 'l/J2,l + sm 'l/J2,l
dee

- Ai
dt <Pl 4 1/Ql 64 Ql [cos ('l/Jl,l + 'l/Jl,2) + 3]

1 A2

Q2 (cos 'l/J2,l + 1) Q: [4 cos 'l/J2,l + cos 2'l/J2,l + 3]

o
(2AiA21Q2) sin 'lJJ2,1 -

= eF1(u).
64 (2A~/Ql)(cos 'lJJ2,1 + 1)

(2Ai/Q2)(cos 'lJJ2,1 + 1)

To satisfy the conditions dA 1/dt = dA21dt = 0, we make the corresponding
contributions of PI(u) vanish by setting

'lJJ2,1 = (2Q2 - l)t + 2<1>2 = In } I, m = 0, 1, 2, ... , (54)
'lJJl,1 + 'lJJl,2 = (4Ql - 3)t + 4<1>1 = mn

whence

(55)

(56)

Putting all of the above in Eq. (53), we arrive at the following expressions for Qi
and Q~ to first order in E:

Qi =~ - ~+3~ {Ai[( -1)m + 3] + 2A~[(-1)1 + I]} + 0([;2)

Q~ = ~ - ~ [(-1)1 + 1] + 1~ [2A~ +AiJ[(- W+ 1] + 0([;2).

For different values of I, m = 0, 1 we pick different "branches" in the Qi, E and
Q~, E planes, along which synchronized periodic solutions of Eq. (39) can be
found, cf. Eqs. (26) and (30), with initial conditions i(t1) = AI' y(t2) = A 2 , and
.£(t1) =Y(t2 ) = O. These solutions have a periodic i(t) component, with period
T1 = 8n/3, and periodic y(t) with period 12 = 4n. Their overall period, therefore,
is T = 31i. = 212 = 8n.

We have verified the validity of these results by integrating the equations of
motion [Eq. (42)] numerically with e = 0.1 and Ql' Q2 chosen from Eq. (56),
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with m = 0 and 1=0. Starting with initial conditions Al = 0.5 and A 2 = 0.5, we
indeed obtained an 8n-periodic orbit with its x(t) and y(t) components oscillating
with periods of 8n/3 and 4n, respectively, as expected from the above analysis.
Furthermore, we find, using Eq. (56), that the particular resonance, mlQl +
m2Q2 = n, corresponding to this orbit is 2QI - Q2 = 1.

Another interesting low-order resonance, 4mI = 3, can be studied starting with
small initial y values, e.g. y(O) = 1 X 10-6

, y(O) = O. For x(O), x(O) not too large,
the amplitude of the y oscillations remains small, while the interactions of the
orbit with the x, x plane, at tn = 2nn, clearly show the presence of a major
stable-and one unstable-period-4 resonance, see Fig. 7. These resonances, and
the general features of the motion around them, are highly reminiscent of the
pictures one gets by iterating analogous mapping models of colliding beams,!,4,s
which illustrates a general consistency between differential and difference
equation approaches to the problem of the beam-beam interaction.

Currently, we are in the process of studying analytically and numerically the
stability of the synchronized periodic solutions of Eq. (42) obtained in this
section. This is considerably more complicated than the one-dimensional case of
Sections 2 and 3; here, the corresponding variational problem involves coupled
Hill's type equations, for which the general theory is not readily available. Still,
multiple scaling techniques are expected to apply, and numerical experiments can
be performed to study the regions of stability about these important periodic
orbits, after they have first been found by the methods of this paper.
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FIGURE 7 Orbit intersections of solutions of Eq. (42) with the x, .i plane for £ = 0.1, Qi = 0.51875,
Q~ = 0.25, y(O) = 1 x 10-6

; y(O) = O. Note the presence of a period-4 resonance, in this quasi-one
dimensional case. The y oscillations here remain small (---10-5

) for all t.
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Finally, we intend to include in our models the effects of synchrotron (or,
longitudinal) oscillations/-3 which we have entirely neglected here. These
oscillations are known to couple with the x, y motion of the particles and create
new resonances, which further enhance beam blow up and compound the
instabilities of the beam-beam interaction.
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