13 research outputs found

    Interior Landscape Plants for Indoor Air Pollution Abatement

    Get PDF
    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Quantum noise propagation in nonlinear optical media

    No full text
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 393-399).Good quantum mechanical descriptions of noise evolution with propagating optical waves are critical to understanding the processes which currently limit the generation of squeezed radiation in nonlinear materials. In the first part of this dissertation a general quantum optical model is developed from fundamental principles to describe optical propagation in a broad variety of nonlinear media. The central distinction of the resulting Quantum Macroscopic Propagation Model ( QMPM) is that material susceptibilities, representing the field's interaction with matter, are replaced with quantum mechanical operators. These quantum material operators are shown to comprise material response functions corresponding to the semiclassical susceptibilities and material noise operators representing the true quantum mechanical nature of the material. The material noise operators play important roles in the noise evolution of propagating fields. The Quantum MacrQscopic Propagation Model is compared with the Langevin techniques of statistical mechanics and is shown to correspond to a quasi-rigorous generalized quantum Langevin model. The QMPM correctly indicates the form of the noise operators associated with any particular order of nonlinearity. In the second part a specific model for squeezing in fiber is developed from the general QMPM. Dispersion, linear loss, Raman scattering, forward Brillouin scattering (GAWBS), and two-photon absorption are incorporated into the model, which is linearized and solved for the continuous-wave case. The model successfully predicts several interactions between nonlinearity, dispersion, and noise. It is shown that low levels of two-photon absorption resulting from germanium-doping of fiber may impose critical limits on fiber squeezing. Forward Brillouin scattering is shown to behave exactly as low-frequency Raman scattering and to seriously limit fiber squeezing at low frequencies. The cw composite model is applied to the parameters of several fiber squeezing experiments described in the literature, and the model is shown to predict with fair accuracy the squeezing results in most cases, including soliton squeezing when Lai's effective soliton nonlinear phase shift is used as the phase shift parameter for the model. Simplified expressions are obtained relating the optimal squeezing available to the nonlinear parameters of a particular experiment or new material.by Jeffrey K. Bounds.Sc.D

    Michael Gibbs & Bill Frisell with the UW Symphony and Jazz Studies Faculty January 14, 2016

    No full text
    Concert ProgramMichael Gibbs & Bill Frisell with the UW Symphony and Jazz Studies Faculty January 14, 201

    Advancing Population Health in Rural Places: Key Lessons and Policy Opportunities

    No full text
    Purpose: This paper advances policy discussion of population (defined as either a patient panel based on conditions such as diabetes, all enrolled patients, or the general community) health in rural places, with a focus on the role of rural healthcare organizations. FMI: Keith Mueller, RUPRI Health Panel chair, [email protected]
    corecore