2,409 research outputs found

    Blackfeet cultural continuity and the Biographic Art tradition: The Deadmond Bison Robe example

    Get PDF

    Age effects in identifying and localising dichotic stimuli: a corpus callosum deficit?

    Get PDF
    In the present study, dichotic listening performance of 31 older adults was compared with performance of 25 younger adults under free and focussed attention conditions. In addition to an age-related general decrease in performance, we observed in the focussed attention condition increased asymmetry in the elderly group: the decrease of recall performance was stronger for the left ear (LE) than for the right ear (RE), while the increase of localisation errors was greater for the RE than for the LE. Identifying and localising digits appear to be different processes mediated predominantly by the left and right hemisphere, respectively. Since age-related reduced performance is strongest for the ear ipsilateral to the hemisphere dominant to that particular function, these findings may be ascribed to decline of corpus callosum functioning resulting in decreased interhemispheric interaction rather than to a selective decline of right hemisphere functions

    Analysis of reinforced concrete structures with occurrence of discrete cracks at arbitrary positions

    Get PDF
    A nonlinear analysis of in-plane loaded plates is presented, which eliminates the disadvantages of the smeared crack approach. The elements used and the computational method are discussed. An example is shown in which one or more discrete cracks are dominant

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).
    • …
    corecore