58 research outputs found

    A comparison of transmission characteristics of Salmonella enterica serovar Enteritidis between pair-housed and group-housed laying hens

    Get PDF
    Human cases of bacterial gastro-enteritis are often caused by the consumption of eggs contaminated with Salmonella species, mainly Salmonella enterica serovar Enteriditis (Salmonella Enteritidis). To reduce human exposure, in several countries worldwide surveillance programmes are implemented to detect colonized layer flocks. The sampling schemes are based on the within-flock prevalence, and, as this changes over time, knowledge of the within-flock dynamics of Salmonella Enteritidis is required. Transmission of Salmonella Enteritidis has been quantified in pairs of layers, but the question is whether the dynamics in pairs is comparable to transmission in large groups, which are more representative for commercial layer flocks. The aim of this study was to compare results of transmission experiments between pairs and groups of laying hens. Experimental groups of either 2 or 200 hens were housed at similar densities, and 1 or 4 hens were inoculated with Salmonella Enteritidis, respectively. Excretion was monitored by regularly testing of fecal samples for the presence of Salmonella Enteritidis. Using mathematical modeling, the group experiments were simulated with transmission parameter estimates from the pairwise experiments. Transmission of the bacteria did not differ significantly between pairs or groups. This finding suggests that the transmission parameter estimates from small-scale experiments might be extrapolated to the field situation

    A single vaccination of commercial broilers does not reduce transmission of H5N1 highly pathogenic avian influenza

    Get PDF
    Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity

    Herd immunity to Newcastle disease virus in poultry by vaccination

    Get PDF
    Newcastle disease is an economically important disease of poultry for which vaccination is applied as a preventive measure in many countries. Nevertheless, outbreaks have been reported in vaccinated populations. This suggests that either the vaccination coverage level is too low or that vaccination does not provide perfect immunity, allowing the virus to spread in partially vaccinated populations. Here we study the requirements of an epidemiologically effective vaccination program against Newcastle disease in poultry, based on data from experimental transmission studies. The transmission studies indicate that vaccinated birds with low or undetectable antibody titres may be protected against disease and mortality but that infection and transmission may still occur. In fact, our quantitative analyses show that Newcastle disease virus is highly transmissible in poultry with low antibody titres. As a consequence, herd immunity can only be achieved if a high proportion of birds (>85%) have a high antibody titre (log2 haemagglutination inhibition titre ≥3) after vaccination. We discuss the implications for the control of Newcastle disease in poultry by vaccination

    Wild birds and increased transmission of highly pathogenic avian influenza (H5N1) among poultry, Thailand

    Get PDF
    Since the outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 virus, wild birds have been suspected of transmitting this virus to poultry. On January 23, 2004, the Ministry of Public Health in Thailand informed the World Health Organization of an avian influenza A (H5N1) outbreak. To determine the epidemiology of this viral infection and its relation to poultry outbreaks in Thailand from 2004 through 2007, we investigated how wild birds play a role in transmission. A total of 24,712 serum samples were collected from migratory and resident wild birds. Reverse transcription PCR showed a 0.7% HPAI (H5N1) prevalence. The highest prevalence was observed during January-February 2004 and March-June 2004, predominantly in central Thailand, which harbors most of the country's poultry flocks. Analysis of the relationship between poultry and wild bird outbreaks was done by using a nonhomogeneous birth and death statistical model. Transmission efficiency among poultry flocks was 1.7× higher in regions with infected wild birds in the given or preceding month. The joint presence of wild birds and poultry is associated with increased spread among poultry flocks

    Limited added value of laboratory monitoring in thiopurine maintenance monotherapy in inflammatory bowel disease patients

    Get PDF
    Background: To timely detect myelotoxicity and hepatotoxicity, laboratory monitoring at 3-month intervals is advised throughout thiopurine maintenance treatment for IBD. However, reported incidence rates of myelotoxicity and hepatotoxicity in maintenance treatment are low. Aim: To assess incidence rates and clinical consequences of myelotoxicity and hepatotoxicity in thiopurine maintenance therapy after at least 1 year of thiopurine treatment. Methods: Retrospective analysis of therapy adjustment for laboratory toxicity in adult IBD patients after 12 consecutive months of azathioprine (AZA) or mercaptopurine monotherapy (ie baseline) between 2000 and 2016. Incidence rates of laboratory toxicity (ie myelotoxicity [leucocyte count <4.0 × 10e9/L, and/or platelet count <150 × 10e9/L] and/or hepatotoxicity (gamma-glutamyltransferase [GGT], alkaline phosphatase [AP], ALT and/or AST above ULN, excluding isolated increased AST/AP]) and associated diagnostic procedures and complications were assessed. Results: In total, 12.391 laboratory assessments were performed on 1132 patients (56% female, AZA 74%) during 3.3 years of median follow-up. Median monitoring frequency was 3.1 assessments/treatment year. Only 83/12.391 (0.7%) assessments resulted in therapy adjustment, dose reduction in 46 patients, cessation in 28 and allopurinol initiation in nine; risk of therapy adjustment was 1.9% per treatment year. Incidence rates of myelotoxicity were 7.1% (5.1% mild/1.8% moderate/0.1% severe) and hepatotoxicity 5.1% (3.8% mild/1.1% moderate/0.2% severe) per treatment year. Treatment-related complications with concurrent laboratory toxicity occurred in 12 patients (1.1%) and would not have been prevented by monitoring. Conclusion: Severe laboratory toxicity is uncommon after 1 year of thiopurine monotherapy at 4-month monitoring intervals. Therapy adjustments are rare after detection of laboratory toxicity. After 1 year of thiopurine monotherapy, laboratory monitoring may be lowered to less than a 4-month interval

    Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens

    Get PDF
    Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i) the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099–0.48 days); (ii) the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8–2.3 days); (iii) the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90–2.5), although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0–1.5 days); and (iv) vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic

    New clinical prediction model for early recognition of sepsis in adult primary care patients:a prospective diagnostic cohort study of development and external validation

    Get PDF
    Background Recognising patients who need immediate hospital treatment for sepsis while simultaneously limiting unnecessary referrals is challenging for GPs.Aim To develop and validate a sepsis prediction model for adult patients in primary care.Design and setting This was a prospective cohort study in four out-of-hours primary care services in the Netherlands, conducted between June 2018 and March 2020.Method Adult patients who were acutely ill and received home visits were included. A total of nine clinical variables were selected as candidate predictors, next to the biomarkers C-reactive protein, procalcitonin, and lactate. The primary endpoint was sepsis within 72 hours of inclusion, as established by an expert panel. Multivariable logistic regression with backwards selection was used to design an optimal model with continuous clinical variables. The added value of the biomarkers was evaluated. Subsequently, a simple model using single cut-off points of continuous variables was developed and externally validated in two emergency department populations.Results A total of 357 patients were included with a median age of 80 years (interquartile range 71–86), of which 151 (42%) were diagnosed with sepsis. A model based on a simple count of one point for each of six variables (aged &gt;65 years; temperature &gt;38°C; systolic blood pressure ≤110 mmHg; heart rate &gt;110/min; saturation ≤95%; and altered mental status) had good discrimination and calibration (C-statistic of 0.80 [95% confidence interval = 0.75 to 0.84]; Brier score 0.175). Biomarkers did not improve the performance of the model and were therefore not included. The model was robust during external validation.Conclusion Based on this study’s GP out-of-hours population, a simple model can accurately predict sepsis in acutely ill adult patients using readily available clinical parameters
    corecore