18 research outputs found

    Genomics and premalignant breast lesions: clues to the development and progression of lobular breast cancer

    Get PDF
    Advances in genomic technology have improved our understanding of the genetic events that parallel breast cancer development. Because almost all mammary carcinomas develop in the terminal duct lobular units of the breast, understanding the events involved in mammary gland development make it possible to recognize those events that, when altered, contribute to breast neoplasia. In this review we focus on lobular carcinomas, discussing the pathology, development, and progression of premalignant lobular lesions from a genomic point of view. We highlight studies utilizing genomic approaches and describe how these investigations have furthered our understanding of the complexity of premalignant breast lesions

    Concordance between Immunohistochemistry and Microarray Gene Expression Profiling for Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Statuses in Breast Cancer Patients in Lebanon

    No full text
    Introduction. Accurate evaluation of estrogen and progesterone receptors and HER2 is critical when diagnosing invasive breast cancer for optimal treatment. The current evaluation method is via immunohistochemistry (IHC). In this paper, we compared results of ER, PR, and HER2 from microarray gene expression to IHC in 81 fresh breast cancer specimens. Methods. Gene expression profiling was performed using the GeneChip Human Genome U133 Plus 2.0 arrays (Affymetrix Inc). Immunohistochemical staining for estrogen receptor, progesterone receptor, and HER2 status was performed using standard methods at a CAP-accredited pathology laboratory. Concordance rates, agreement measures, and kappa scores were calculated for both methods. Results. For ER, Kappa score was 0.918 (95% CI, 0.77.3–1.000) and concordance rate was 97.5% (95% CI, 91.4%–99.7%). For PR, Kappa score was 0.652 (95% CI, 0.405–0.849) and concordance rate was 86.4% (95% CI, 77%–93%). For HER2, Kappa score was 0.709 (95% CI, 0.428–0.916) and concordance rate was 97.5% (95% CI, 91.4%–99.7%). Conclusion. Our results are in line with the available evidence with the concordance rate being the lowest for the progesterone receptor. In general, microarray gene expression and IHC proved to have high concordance rates. Several factors can increase the discordance rate such as differences in sample processing

    Concordance between Immunohistochemistry and Microarray Gene Expression Profiling for Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Statuses in Breast Cancer Patients in Lebanon

    No full text
    Introduction. Accurate evaluation of estrogen and progesterone receptors and HER2 is critical when diagnosing invasive breast cancer for optimal treatment. The current evaluation method is via immunohistochemistry (IHC). In this paper, we compared results of ER, PR, and HER2 from microarray gene expression to IHC in 81 fresh breast cancer specimens. Methods. Gene expression profiling was performed using the GeneChip Human Genome U133 Plus 2.0 arrays (Affymetrix Inc). Immunohistochemical staining for estrogen receptor, progesterone receptor, and HER2 status was performed using standard methods at a CAP-accredited pathology laboratory. Concordance rates, agreement measures, and kappa scores were calculated for both methods. Results. For ER, Kappa score was 0.918 (95% CI, 0.77.3–1.000) and concordance rate was 97.5% (95% CI, 91.4%–99.7%). For PR, Kappa score was 0.652 (95% CI, 0.405–0.849) and concordance rate was 86.4% (95% CI, 77%–93%). For HER2, Kappa score was 0.709 (95% CI, 0.428–0.916) and concordance rate was 97.5% (95% CI, 91.4%–99.7%). Conclusion. Our results are in line with the available evidence with the concordance rate being the lowest for the progesterone receptor. In general, microarray gene expression and IHC proved to have high concordance rates. Several factors can increase the discordance rate such as differences in sample processing

    miRNA as potential biomarkers of breast cancer in the Lebanese population and in young women: a pilot study.

    No full text
    Relative to western populations, the percentage of women diagnosed with breast cancer at a young age in Lebanon is high. While the younger age of the Lebanese population compared to the West certainly contributes to this difference, potential genetic, reproductive and/or biological factors likely play an important role. The objective of this study is to investigate the contribution of miRNAs in this setting through the analysis of the expression of five reported dysregulated miRNAs, miR-148b, miR-10b, miR-21, miR-221, and miR-155 in 20 normal and 57 cancerous breast tissues from Lebanese breast cancer patients. After finding their relative expression by quantitative reverse transcription real time PCR, the results were analyzed with respect to the patients' clinical and histopathology presentations. Compared to normal breast tissues, significant upregulation of miR-155, miR-21 and miR-148b, notable downregulation of miR-10b and non-significant expression of miR-221 were observed in tumor tissues. Moreover, miR-10b was significantly underexpressed in estrogen/progesterone receptor (ER/PR) negative tumors relative to ER/PR positive tumor tissues. miR-155 was also significantly overexpressed in postmenopausal patients and in those of age at diagnosis greater than 40 years old as well as in PR negative or in human epidermal growth factor 2 (Her2) positive tissues. This study is the first one to report miRNA expression patterns in Lebanese breast cancer patients. We found that differential miRNA expression in breast cancer could be variable between Lebanese and Western populations. miR-10b was positively correlated with the ER and PR status and miR-155 could be a noteworthy biomarker for the menopausal state, age at diagnosis, PR and Her2 status. Hence, miRNA can be used as biomarkers for early breast cancer detection
    corecore