19 research outputs found

    Analysis of test beam data taken with a prototype of TPC with resistive Micromegas for the T2K Near Detector upgrade

    Full text link
    In this paper we describe the performance of a prototype of the High Angle Time Projection Chambers (HA-TPCs) that are being produced for the Near Detector (ND280) upgrade of the T2K experiment. The two HA-TPCs of ND280 will be instrumented with eight Encapsulated Resistive Anode Micromegas (ERAM) on each endplate, thus constituting in total 32 ERAMs. This innovative technique allows the detection of the charge emitted by ionization electrons over several pads, improving the determination of the track position. The TPC prototype has been equipped with the first ERAM module produced for T2K and with the HA-TPC readout electronics chain and it has been exposed to the DESY Test Beam in order to measure spatial and dE/dx resolution. In this paper we characterize the performances of the ERAM and, for the first time, we compare them with a newly developed simulation of the detector response. Spatial resolution better than 800 μm{\mu \rm m} and dE/dx resolution better than 10% are observed for all the incident angles and for all the drift distances of interest. All the main features of the data are correctly reproduced by the simulation and these performances fully fulfill the requirements for the HA-TPCs of T2K

    Characterization of Charge Spreading and Gain of Encapsulated Resistive Micromegas Detectors for the Upgrade of the T2K Near Detector Time Projection Chambers

    Full text link
    An upgrade of the near detector of the T2K long baseline neutrino oscillation experiment is currently being conducted. This upgrade will include two new Time Projection Chambers, each equipped with 16 charge readout resistive Micromegas modules. A procedure to validate the performance of the detectors at different stages of production has been developed and implemented to ensure a proper and reliable operation of the detectors once installed. A dedicated X-ray test bench is used to characterize the detectors by scanning each pad individually and to precisely measure the uniformity of the gain and the deposited energy resolution over the pad plane. An energy resolution of about 10% is obtained. A detailed physical model has been developed to describe the charge dispersion phenomena in the resistive Micromegas anode. The detailed physical description includes initial ionization, electron drift, diffusion effects and the readout electronics effects. The model provides an excellent characterization of the charge spreading of the experimental measurements and allowed the simultaneous extraction of gain and RC information of the modules

    Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules

    Get PDF
    The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only. Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analyses have been performed in order to define the possible margin against HF the integrated Helium-Cooled Eurofer FW could have. Based on the Helium Cooled Lithium Lead (HCLL) equatorial outboard module dimensions, thermal and stress Finite Element Method analyses have been performed with Cast3M with various FW front wall thicknesses and HF, under normal steady state condition. Stress have been analyzed with RCC-MRx code including high temperature (creep), cyclic (fatigue) and irradiated rules. This paper shows that the thickness of the plasma-facing wall of the FW should be minimized, within the limits necessary to withstand primary stresses, in order to reduce the temperature on the structure and thus prevent fatigue and creep damage as well as a reduction of the stress limits Sm, function of temperature, to prevent ratcheting. Moreover, the paper will discuss the importance of having constant HF during the reactor operation. A small variation of HF could increase a lot the risk of damage such as fatigue and creep. At the end, the effect of irradiation shows up to be the limiting criterion and penalizes the capacity of the FW to withstand high HF

    DEMO Breeding Blanket Helium Cooled First Wall design investigation to cope high heat loads

    No full text
    International audienceIn the framework of the European “HORIZON 2020” innovation and research program, the EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO). One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. CEA-Saclay, with the support of Wigner-RCP and Centrum výzkumu Řež, is in charge of the development of one of the four BB concepts investigated in Europe for DEMO: the Helium Cooled Lithium Lead BB. The first component of the BB facing the plasma, the First Wall (FW), has until now been designed in order to respect the design criteria and temperature limit of the Eurofer structure for a maximum heat load extrapolated from ITER TBM, equal to 0.5 MW/m². New heat loads on the First Wall of DEMO BB have been assessed recently showing higher values on some poloidal locations of the BB.This paper presents the investigation on the Helium FW design integrated to the BB (inlet helium temperature at 300 °C). Different designs have been studied from rectangular to circular channels and with different options for the tungsten armour surrounding the channels. The performance of the different concepts has been assessed with thermal and mechanical Finite Element Method numerical simulation based on simplified FW models and comparing results with the RCC-MRx code design rules to prevent failure during normal steady state condition and off normal condition in case of Loss Of Coolant Accident (LOCA) event. The results show that the options with circular channel surrounded by tungsten could meet some plasma heat loads requirements from design point of view. However, the concept is still in an early stage of development and open issues are discussed

    The DEMO Helium Cooled Lithium Lead advanced-plus Breeding Blanket design improvement and FEM studies

    Get PDF
    International audienceIn the framework of the European “HORIZON 2020” research program, the EUROfusion Consortium develops a design of a fusion demonstrator (DEMO). CEA-Saclay, with the support of Wigner-CR and IPP-CR, is in charge of one of the four Breeding Blanket (BB) concepts investigated in Europe for DEMO: the Helium Cooled Lithium Lead (HCLL) BB. The BB directly surrounding the plasma is a major component ensuring tritium self-sufficiency, shielding against neutrons from D-T plasmas and heat extraction for electricity conversion.In this article, the equatorial outboard module of the HCLL reference DEMO BB (“advanced-plus” BB) concept is studied regarding thermal and mechanical behavior during normal and accidental conditions that led to modify the design and enhance the performances. A numerical approach based on the Finite Element Method (FEM) is followed. The methodology established, the assumptions done as well as the results obtained in each case are reported and critically analysed, scrutinizing some open issues on this “advanced-plus” reference concept

    Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules

    No full text
    The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only.Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analyses have been performed in order to define the possible margin against HF the integrated Helium-Cooled Eurofer FW could have. Based on the Helium Cooled Lithium Lead (HCLL) equatorial outboard module dimensions, thermal and stress Finite Element Method analyses have been performed with Cast3M with various FW front wall thicknesses and HF, under normal steady state condition. Stress have been analyzed with RCC-MRx code including high temperature (creep), cyclic (fatigue) and irradiated rules.This paper shows that the thickness of the plasma-facing wall of the FW should be minimized, within the limits necessary to withstand primary stresses, in order to reduce the temperature on the structure and thus prevent fatigue and creep damage as well as a reduction of the stress limits Sm, function of temperature, to prevent ratcheting.Moreover, the paper will discuss the importance of having constant HF during the reactor operation. A small variation of HF could increase a lot the risk of damage such as fatigue and creep. At the end, the effect of irradiation shows up to be the limiting criterion and penalizes the capacity of the FW to withstand high HF

    Transcalciferin in serum and cytosol

    No full text

    Thermal optimization of the Helium-Cooled Lithium Lead breeding zone layout design regarding TBR enhancement

    No full text
    Within the framework of EUROfusion R&D activities, CEA-Saclay has carried out an investigation of the thermal and mechanical performances of alternative designs intended to enhance the Tritium Breeding Ratio (TBR) of the Helium-Cooled Lithium Lead (HCLL) Breeding Blanket (BB) for DEMO. Neutronic calculations performed on the 2014 DEMO HCLL baseline predicted a value of TBR equal to 1.07, lower than the required value of 1.1, necessary to ensure the tritium self-sufficiency of the breeding blanket taking into account uncertainties. In order to reach the TBR target, the strategy of the steel amount reduction inside the HCLL module breeding zone (BZ) has been followed by suppressing some stiffening/cooling plates inside the BZ, leading to this “advanced” concept. Since all the plates inside the BZ are actively cooled by helium, each change in their geometric layout has a strong impact on the thermal response of the module. Moreover, the removal of stiffening plate may impact the resistance of the box in case of in-module loss of coolant accident (LOCA).A thermal and mechanical campaign of analyses has been carried out in order to assess a potentially optimized layout of the module which could comply with the whole set of rules foreseen for the HCLL BB design. To perform this research campaign, a theoretical-numerical approach, based on the Finite Element Method (FEM), has been followed and the qualified Cast3M and NX FEM codes have been adopted.Results obtained are herewith reported and critically discussed, highlighting the open issues and suggesting the pertinent modifications to DEMO HCLL module design

    Thermal optimization of the Helium-Cooled Lithium Lead breeding zone layout design regarding TBR enhancement

    No full text
    Within the framework of EUROfusion R&D activities, CEA-Saclay has carried out an investigation of the thermal and mechanical performances of alternative designs intended to enhance the Tritium Breeding Ratio (TBR) of the Helium-Cooled Lithium Lead (HCLL) Breeding Blanket (BB) for DEMO. Neutronic calculations performed on the 2014 DEMO HCLL baseline predicted a value of TBR equal to 1.07, lower than the required value of 1.1, necessary to ensure the tritium self-sufficiency of the breeding blanket taking into account uncertainties. In order to reach the TBR target, the strategy of the steel amount reduction inside the HCLL module breeding zone (BZ) has been followed by suppressing some stiffening/cooling plates inside the BZ, leading to this “advanced” concept. Since all the plates inside the BZ are actively cooled by helium, each change in their geometric layout has a strong impact on the thermal response of the module. Moreover, the removal of stiffening plate may impact the resistance of the box in case of in-module loss of coolant accident (LOCA). A thermal and mechanical campaign of analyses has been carried out in order to assess a potentially optimized layout of the module which could comply with the whole set of rules foreseen for the HCLL BB design. To perform this research campaign, a theoretical-numerical approach, based on the Finite Element Method (FEM), has been followed and the qualified Cast3M and NX FEM codes have been adopted. Results obtained are herewith reported and critically discussed, highlighting the open issues and suggesting the pertinent modifications to DEMO HCLL module desig
    corecore