51 research outputs found

    Defective Resection at DNA Double-Strand Breaks Leads to De Novo Telomere Formation and Enhances Gene Targeting

    Get PDF
    The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2–4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Δ exo1Δ mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Δ exo1Δ, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Δ exo1Δ cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair

    Diabetes-Specific Nutrition Algorithm: A Transcultural Program to Optimize Diabetes and Prediabetes Care

    Get PDF
    Type 2 diabetes (T2D) and prediabetes have a major global impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. To mitigate this disease burden, interventions of proven effectiveness must be used. Evidence shows that nutrition therapy improves glycemic control and reduces the risks of diabetes and its complications. Accordingly, diabetes-specific nutrition therapy should be incorporated into comprehensive patient management programs. Evidence-based recommendations for healthy lifestyles that include healthy eating can be found in clinical practice guidelines (CPGs) from professional medical organizations. To enable broad implementation of these guidelines, recommendations must be reconstructed to account for cultural differences in lifestyle, food availability, and genetic factors. To begin, published CPGs and relevant medical literature were reviewed and evidence ratings applied according to established protocols for guidelines. From this information, an algorithm for the nutritional management of people with T2D and prediabetes was created. Subsequently, algorithm nodes were populated with transcultural attributes to guide decisions. The resultant transcultural diabetes-specific nutrition algorithm (tDNA) was simplified and optimized for global implementation and validation according to current standards for CPG development and cultural adaptation. Thus, the tDNA is a tool to facilitate the delivery of nutrition therapy to patients with T2D and prediabetes in a variety of cultures and geographic locations. It is anticipated that this novel approach can reduce the burden of diabetes, improve quality of life, and save lives. The specific Southeast Asian and Asian Indian tDNA versions can be found in companion articles in this issue of Current Diabetes Reports

    Cracking the BAFF code.

    Get PDF
    The tumour necrosis factor (TNF) family members B cell activating factor (BAFF) and APRIL (a proliferation-inducing ligand) are crucial survival factors for peripheral B cells. An excess of BAFF leads to the development of autoimmune disorders in animal models, and high levels of BAFF have been detected in the serum of patients with various autoimmune conditions. In this Review, we consider the possibility that in mice autoimmunity induced by BAFF is linked to T cell-independent B cell activation rather than to a severe breakdown of B cell tolerance. We also outline the mechanisms of BAFF signalling, the impact of ligand oligomerization on receptor activation and the progress of BAFF-depleting agents in the clinical setting

    The Pif1 family in prokaryotes: what are our helicases doing in your bacteria?

    No full text
    Pif1 family helicases, which are found in nearly all eukaryotes, have important roles in both nuclear and mitochondrial genome maintenance. Recently, the increasing availability of genome sequences has revealed that Pif1 helicases are also widely found in diverse prokaryotes, but it is currently unknown what physiological function(s) prokaryotic Pif1 helicases might perform. This Perspective aims to briefly introduce the reader to the well-studied eukaryotic Pif1 family helicases and speculate on what roles such enzymes may play in bacteria. On the basis of our hypotheses, we predict that Pif1 family helicases are important for resolving common issues that arise during DNA replication, recombination, and repair rather than functioning in a eukaryotic-specific manner
    corecore