22 research outputs found

    The structure of the tetrasialoganglioside from human brain

    Get PDF
    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias

    Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    Get PDF
    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype

    The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome

    Get PDF
    Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods: Clinicians entered clinical data in an extensive web-based survey. Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features

    A classification prognostic score to predict OS in stage IV well-differentiated neuroendocrine tumors

    No full text
    No validated prognostic tool is available for predicting overall survival (OS) of patients with well-differentiated neuroendocrine tumors (WDNETs). This study, conducted in three independent cohorts of patients from five different European countries, aimed to develop and validate a classification prognostic score for OS in patients with stage IV WDNETs. We retrospectively collected data on 1387 patients: (i) patients treated at the Istituto Nazionale Tumori (Milan, Italy; n = 515); (ii) European cohort of rare NET patients included in the European RARECAREnet database (n = 457); (iii) Italian multicentric cohort of pancreatic NET (pNETs) patients treated at 24 Italian institutions (n = 415). The score was developed using data from patients included in cohort (i) (training set); external validation was performed by applying the score to the data of the two independent cohorts (ii) and (iii) evaluating both calibration and discriminative ability (Harrell C statistic). We used data on age, primary tumor site, metastasis (synchronous vs metachronous), Ki-67, functional status and primary surgery to build the score, which was developed for classifying patients into three groups with differential 10-year OS: (I) favorable risk group: 10-year OS ≥70%; (II) intermediate risk group: 30% ≤ 10-year OS < 70%; (III) poor risk group: 10-year OS <30%. The Harrell C statistic was 0.661 in the training set, and 0.626 and 0.601 in the RARECAREnet and Italian multicentric validation sets, respectively. In conclusion, based on the analysis of three 'field-practice' cohorts collected in different settings, we defined and validated a prognostic score to classify patients into three groups with different long-term prognoses

    A classification prognostic score to predict OS in stage IV well-differentiated neuroendocrine tumors

    No full text
    No validated prognostic tool is available for predicting overall survival (OS) of patients with well-differentiated neuroendocrine tumors (WDNETs). This study, conducted in three independent cohorts of patients from five different European countries, aimed to develop and validate a classification prognostic score for OS in patients with stage IV WDNETs. We retrospectively collected data on 1387 patients: (i) patients treated at the Istituto Nazionale Tumori (Milan, Italy; n = 515); (ii) European cohort of rare NET patients included in the European RARECAREnet database (n = 457); (iii) Italian multicentric cohort of pancreatic NET (pNETs) patients treated at 24 Italian institutions (n = 415). The score was developed using data from patients included in cohort (i) (training set); external validation was performed by applying the score to the data of the two independent cohorts (ii) and (iii) evaluating both calibration and discriminative ability (Harrell C statistic). We used data on age, primary tumor site, metastasis (synchronous vs metachronous), Ki-67, functional status and primary surgery to build the score, which was developed for classifying patients into three groups with differential 10-year OS: (I) favorable risk group: 10-year OS 6570%; (II) intermediate risk group: 30% 64 10-year OS &lt; 70%; (III) poor risk group: 10-year OS &lt;30%. The Harrell C statistic was 0.661 in the training set, and 0.626 and 0.601 in the RARECAREnet and Italian multicentric validation sets, respectively. In conclusion, based on the analysis of three 'field-practice' cohorts collected in different settings, we defined and validated a prognostic score to classify patients into three groups with different long-term prognoses
    corecore