17 research outputs found

    Co-display of diverse spike proteins on nanoparticles broadens sarbecovirus neutralizing antibody responses

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses continuous challenges in combating the virus. Here, we describe vaccination strategies to broaden SARS-CoV-2 and sarbecovirus immunity by combining spike proteins based on different viruses or viral strains displayed on two-component protein nanoparticles. First, we combined spike proteins based on ancestral and Beta SARS-CoV-2 strains to broaden SARS-CoV-2 immune responses. Inclusion of Beta spike improved neutralizing antibody responses against SARS-CoV-2 Beta, Gamma, and Omicron BA.1 and BA.4/5. A third vaccination with ancestral SARS-CoV-2 spike also improved cross-neutralizing antibody responses against SARS-CoV-2 variants, in particular against the Omicron sublineages. Second, we combined SARS-CoV and SARS-CoV-2 spike proteins to broaden sarbecovirus immune responses. Adding SARS-CoV spike to a SARS-CoV-2 spike vaccine improved neutralizing responses against SARS-CoV and SARS-like bat sarbecoviruses SHC014 and WIV1. These results should inform the development of broadly active SARS-CoV-2 and pan-sarbecovirus vaccines and highlight the versatility of two-component nanoparticles for displaying diverse antigens

    A Comparison between Patient-and Physician-Reported Late Radiation Toxicity in Long-Term Prostate Cancer Survivors

    No full text
    Patient-reported outcome measures (PROMs) are advocated for the monitoring of toxicity after radiotherapy. However, studies comparing physician-and patient-reported toxicity show low concordance. In this study, we compared physician-and patient-reported toxicity in long-term prostate cancer survivors after radiotherapy, and we determined the correlation with a presumable risk factor for late toxicity: γ-H2AX foci decay ratio (FDR). Patients formerly included in a prospective study were invited to participate in this new study, comprising one questionnaire and one call with a trial physician assistant. Concordance was calculated for seven symptoms. Gamma-H2AX FDRs were determined in ex vivo irradiated lymphocytes in a previous analysis. Associations between FDR and long-term prevalence of toxicity were assessed using univariable logistic regression analyses. The 101 participants had a median follow-up period of 9 years. Outcomes were discordant in 71% of symptomatic patients; in 21%, the physician-assessed toxicity (using CTCAE) was higher, and, in 50%, the patients reported higher toxicity. We did not find a correlation between presence of toxicity at long-term follow-up and FDR. In conclusion, patients assigned greater severity to symptoms than the trial physician assistant did. Consideration of both perspectives may be warranted to provide the best care

    Three-dose mRNA-1273 vaccination schedule: sufficient antibody response in majority of immunocompromised hematology patients

    No full text
    ImportanceIn patients with hematologic malignancies, the immunogenicity of the standard 2-dose mRNA-1273 coronavirus disease 19 (COVID-19) vaccination schedule is often insufficient due to underlying disease and current or recent therapy. ObjectiveTo determine whether a 3rd mRNA-1273 vaccination raises antibody concentrations in immunocompromised hematology patients to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. DesignProspective observational cohort study. SettingFour academic hospitals in the Netherlands. Participants584 evaluable immunocompromised hematology patients, all grouped in predefined cohorts spanning the spectrum of hematologic malignancies. ExposureOne additional vaccination with mRNA-1273 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and MeasuresSerum IgG antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after each vaccination, and pseudovirus neutralization of wildtype, delta and omicron variants in a subgroup of patients. ResultsIn immunocompromised hematology patients, a 3rd mRNA-1273 vaccination led to median S1 IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1 IgG concentration after the 3rd vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid malignancies or multiple myeloma, and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1 IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients on or shortly after rituximab therapy, CD19-directed chimeric antigen receptor T cell therapy recipients, and chronic lymphocytic leukemia patients on ibrutinib were less or unresponsive to the 3rd vaccination. In the 27 patients who received cell therapy between the 2nd and 3rd vaccination, S1 antibodies were preserved, but a 3rd mRNA-1273 vaccination did not significantly enhance S1 IgG concentrations except for multiple myeloma patients receiving autologous HCT. A 3rd vaccination significantly improved neutralization capacity per antibody. Conclusions and RelevanceThe primary schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination. B cell lymphoma patients and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial RegistrationEudraCT 2021-001072-41 Key pointsO_ST_ABSQuestionC_ST_ABSCan a 3rd mRNA-1273 vaccination improve COVID-19 antibody concentrations in immunocompromised hematology patients to levels similar to healthy adults after the standard 2-dose mRNA-1273 schedule? FindingsIn this prospective observational cohort study that included 584 immunocompromised hematology patients, a 3rd mRNA-1273 vaccination significantly improved SARS-CoV-2 antibody concentrations to levels not significantly different from those obtained by healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Pseudovirus neutralization capacity per antibody of wild type virus and variants of concern also significantly improved. MeaningThe primary COVID-19 vaccination schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination

    Antibody Response in Immunocompromised Patients With Hematologic Cancers Who Received a 3-Dose mRNA-1273 Vaccination Schedule for COVID-19.

    Get PDF
    Importance: It has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce. Objective: To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Design, Setting, and Participants: This prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities. Exposures: One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and Measures: Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. Results: In this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. Conclusions and Relevance: Results of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial Registration: EudraCT Identifier: 2021-001072-41

    Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study.

    No full text
    BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants.Methods and findingsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; pConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination

    Co-display of diverse spike proteins on nanoparticles broadens sarbecovirus neutralizing antibody responses

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses continuous challenges in combating the virus. Here, we describe vaccination strategies to broaden SARS-CoV-2 and sarbecovirus immunity by combining spike proteins based on different viruses or viral strains displayed on two-component protein nanoparticles. First, we combined spike proteins based on ancestral and Beta SARS-CoV-2 strains to broaden SARS-CoV-2 immune responses. Inclusion of Beta spike improved neutralizing antibody responses against SARS-CoV-2 Beta, Gamma, and Omicron BA.1 and BA.4/5. A third vaccination with ancestral SARS-CoV-2 spike also improved cross-neutralizing antibody responses against SARS-CoV-2 variants, in particular against the Omicron sublineages. Second, we combined SARS-CoV and SARS-CoV-2 spike proteins to broaden sarbecovirus immune responses. Adding SARS-CoV spike to a SARS-CoV-2 spike vaccine improved neutralizing responses against SARS-CoV and SARS-like bat sarbecoviruses SHC014 and WIV1. These results should inform the development of broadly active SARS-CoV-2 and pan-sarbecovirus vaccines and highlight the versatility of two-component nanoparticles for displaying diverse antigens
    corecore