37 research outputs found
Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation
Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis
Разработка автоматизированного ИТП жилого здания
Объектом разработки системы является жилой дом с инженерными сетями в микрорайоне «Северный» в Заречном поселении Томского района Томской области.
Целью работы является разработка системы мониторинга и управления теплопотреблением здания, которая позволит вести точный учет потребляемой тепловой энергии, регулировать объем потребления в зависимости от текущих погодных условий, обеспечивать экономию энергоресурсов.
В результате разработана система, содержащая в себе компоненты, позволяющие производить учет и управление теплопотреблением здания. Причем все данные о работе системы, объемах потребления и параметрах теплоносителя поступают диспетчеру, имеющему возможность отслеживать все параметры системы удаленно.The object of the development of the system is a residential building with engineering services in the neighborhood "North" in Zarechny settlement Tomsk region Tomsk region.
The aim is to develop a building heat consumption monitoring and control system that will keep accurate records of heat energy consumption, adjusted consumption, depending on the current weather conditions, to ensure energy saving.
As a result, we developed a system, which contains the components to allow for registration and control of heat consumption of the building. Moreover, all data on the system performance, volume and consumption parameters receives coolant controller having the ability to track all system parameters remotely
Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function
<p>Abstract</p> <p>Background</p> <p>Plants contain numerous <it>Su(var)3-9 </it>homologues (<it>SUVH</it>) and related (<it>SUVR</it>) genes, some of which await functional characterization. Although there have been studies on the evolution of plant <it>Su(var)3-9 SET </it>genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation.</p> <p>Results</p> <p>Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core <it>Su(var)3-9 </it>homologues and related (<it>cSUVHR</it>) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant <it>Su(var)3-9 SET </it>genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade.</p> <p>Conclusions</p> <p>A detailed phylogenetic analysis of the plant <it>Su(var)3-9 SET g</it>enes was performed. A novel deep phylogenetic relationship including most plant <it>Su(var)3-9 SET </it>genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of <it>Physcomitrella patens </it>(moss) from other land plants. One or multiple retroposition events might have occurred among <it>SUVH </it>genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant <it>Su(var)3-9 SET </it>genes with different functions were described, contributing to the design of further experimental studies.</p
Identification and Characterization of Two Functionally Unknown Genes Involved in Butanol Tolerance of Clostridium acetobutylicum
Solvents toxicity is a major limiting factor hampering the cost-effective biotechnological production of chemicals. In Clostridium acetobutylicum, a functionally unknown protein (encoded by SMB_G1518) with a hypothetical alcohol interacting domain was identified. Disruption of SMB_G1518 and/or its downstream gene SMB_G1519 resulted in increased butanol tolerance, while overexpression of SMB_G1518-1519 decreased butanol tolerance. In addition, SMB_G1518-1519 also influences the production of pyruvate:ferredoxin oxidoreductase (PFOR) and flagellar protein hag, the maintenance of cell motility. We conclude that the system of SMB_G1518-1519 protein plays a role in the butanol sensitivity/tolerance phenotype of C. acetobutylicum, and can be considered as potential targets for engineering alcohol tolerance
Genesis of a Fungal Non-Self Recognition Repertoire
Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification
Group II Intron-Anchored Gene Deletion in Clostridium
Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron “ClosTron” system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493–1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established
Chaperonin Containing T-Complex Polypeptide Subunit Eta (CCT-eta) Is a Specific Regulator of Fibroblast Motility and Contractility
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression
A Cytosine Methyltransferase Homologue Is Essential for Sexual Development in Aspergillus nidulans
Background: The genome defense processes RIP (repeat-induced point mutation) in the filamentous fungus Neurospora crassa, and MIP (methylation induced premeiotically) in the fungus Ascobolus immersus depend on proteins with DNA methyltransferase (DMT) domains. Nevertheless, these proteins, RID and Masc1, respectively, have not been demonstrated to have DMT activity. We discovered a close homologue in Aspergillus nidulans, a fungus thought to have no methylation and no genome defense system comparable to RIP or MIP. Principal Findings: We report the cloning and characterization of the DNA methyltransferase homologue A (dmtA) gene from Aspergillus nidulans. We found that the dmtA locus encodes both a sense (dmtA) and an anti-sense transcript (tmdA). Both transcripts are expressed in vegetative, conidial and sexual tissues. We determined that dmtA, but not tmdA, is required for early sexual development and formation of viable ascospores. We also tested if DNA methylation accumulated in any of the dmtA/tmdA mutants we constructed, and found that in both asexual and sexual tissues, these mutants, just like wild-type strains, appear devoid of DNA methylation. Conclusions/Significance: Our results demonstrate that a DMT homologue closely related to proteins implicated in RIP and MIP has an essential developmental function in a fungus that appears to lack both DNA methylation and RIP or MIP. It remains formally possible that DmtA is a bona fide DMT, responsible for trace, undetected DNA methylation that i
Analysis of Chaperone mRNA Expression in the Adult Mouse Brain by Meta Analysis of the Allen Brain Atlas
The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain