9 research outputs found

    Synergistic cytoprotection by co-treatment with dexamethasone and rapamycin against proinflammatory cytokine-induced alveolar epithelial cell injury

    No full text
    Abstract Background One of the main pathophysiological manifestations during the acute phase of sepsis is massive production of proinflammatory mediators. Clinical trials involving direct suppression of inflammatory mediators to relieve organ dysfunction in sepsis have been extensively performed; however, the clinical outcomes of such trials remain far from satisfactory. Given the need for better sepsis treatments, we have screened various agents with anti-inflammatory properties for cytoprotective effects. In this study, we identified dexamethasone and rapamycin as clinically applicable candidates with favorable synergistic effects against inflammatory cytokine-induced cytotoxicity in vitro and further explored the molecular mechanisms underlying the augmented cytoprotective effects exerted by co-treatment with both drugs. Methods Human alveolar epithelial cell-derived A549 cells were stimulated with a mixture of inflammatory cytokines, TNF-alpha, IL-1beta, and IFN-gamma, which induce cellular injury, including apoptosis. This in vitro model was designed to simulate acute lung injury (ALI) associated with sepsis. The cells were co-treated with dexamethasone and rapamycin under cytokine stimulation. Conditioned medium and cell lysates were subjected to further analysis. Results Either dexamethasone or rapamycin significantly attenuated cytokine-induced cytotoxicity in A549 cells in a dose-dependent manner. In addition, the simultaneous administration of dexamethasone and rapamycin had a synergistic cytoprotective effect. The applied doses of dexamethasone (10 nM) and rapamycin (1 nM) were considerably below the reported plasma concentrations of each drug in clinical setting. Interestingly, distinct augmentation of both of c-Jun inhibition and Akt activation were observed when the cells were co-treated with both drugs under cytokine stimulation. Conclusions A synergistic protective effect of dexamethasone and rapamycin was observed against cytokine-induced cytotoxicity in A549 cells. Augmentation of both of c-Jun inhibition and Akt activation were likely responsible for the cytoprotective effect. The combined administration of anti-inflammatory drugs such as dexamethasone and rapamycin offers a promising treatment option for alveolar epithelial injury associated with sepsis

    Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice

    No full text
    Background: Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H(2)S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse. Methods and Results: Mice were subjected to 8 minutes of normothermic CA and resuscitated with chest compression and mechanical ventilation. Seven minutes after the onset of CA (1 minute before CPR), mice received sodium sulfide (Na(2)S) (0.55 mg/kg IV) or vehicle 1 minute before CPR. There was no difference in the rate of return of spontaneous circulation, CPR time to return of spontaneous circulation, and left ventricular function at return of spontaneous circulation between groups. Administration of Na(2)S 1 minute before CPR markedly improved survival rate at 24 hours after CPR (15/15) compared with vehicle (10/26; P=0.0001 versus Na(2)S). Administration of Na(2)S prevented CA/CPR-induced oxidative stress and ameliorated left ventricular and neurological dysfunction 24 hours after CPR. Delayed administration of Na(2)S at 10 minutes after CPR did not improve outcomes after CA/CPR. Cardioprotective effects of Na(2)S were confirmed in isolated-perfused mouse hearts subjected to global ischemia and reperfusion. Cardiomyocyte-specific overexpression of cystathionine gamma-lyase (an enzyme that produces H(2)S) markedly improved outcomes of CA/CPR. Na(2)S increased phosphorylation of nitric oxide synthase 3 in left ventricle and brain cortex, increased serum nitrite/nitrate levels, and attenuated CA-induced mitochondrial injury and cell death. Nitric oxide synthase 3 deficiency abrogated the protective effects of Na2S on the outcome of CA/CPR. Conclusions: These results suggest that administration of Na(2)S at the time of CPR improves outcome after CA possibly via a nitric oxide synthase 3-dependent signaling pathway. (Circulation. 2009; 120:888-896.
    corecore