615 research outputs found
Species sensitivity of zeolite minerals for uptake of mercury solutes
The uptake of inorganic Hg2+ and organometallic CH3Hg+ from aqueous solutions by 11 different natural zeolites has been investigated using a batch distribution coefficient (Kd) method and supported by a preliminary voltammetric study. The effect of mercury concentration on theKd response is shown over an environmentally appropriate concentration range of 0.1-5 ppm inorganic and organometallic Hg using a batch factor of 100 ml gâ1 and 20 h equilibration. Analcime and a Na-chabazite displayed the greatest methylmercury uptakes (Kd values at 1.5 ppm of 4023 and 3456, respectively), with mordenite as the smallest at 578. All uptake responses were greater for methylmercury than for the inorganic mercuric nitrate solutions, suggesting a distinctive sensitivity of zeolites to reaction with different types of solute species. It is likely that this sensitivity is attributable to the precise nature of the resultant Hg-zeolite bonds. Additionally, both the Si-Al ratio and the Na content of the initial natural zeolite samples are shown to influence the Kd responses, with positive correlations between Kd and Na content for all zeolites excluding mordenite
Niobium Silicon alloys for Kinetic Inductance Detectors
We are studying the properties of Niobium Silicon amorphous alloys as a
candidate material for the fabrication of highly sensitive Kinetic Inductance
Detectors (KID), optimized for very low optical loads. As in the case of other
composite materials, the NbSi properties can be changed by varying the relative
amounts of its components. Using a NbSi film with T_c around 1 K we have been
able to obtain the first NbSi resonators, observe an optical response and
acquire a spectrum in the band 50 to 300 GHz. The data taken show that this
material has very high kinetic inductance and normal state surface resistivity.
These properties are ideal for the development of KID. More measurements are
planned to further characterize the NbSi alloy and fully investigate its
potential.Comment: Accepted for publication on Journal of Low Temperature Physics.
Proceedings of the LTD15 conference (Caltech 2013
Development of Lumped Element Kinetic Inductance Detectors for NIKA
Lumped-element kinetic inductance detectors(LEKIDs) have recently shown
considerable promise as direct absorption mm-wavelength detectors for
astronomical applications. One major research thrust within the N\'eel Iram
Kids Array (NIKA) collaboration has been to investigate the suitability of
these detectors for deployment at the 30-meter IRAM telescope located on Pico
Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID),
using quarter wavelength resonators, the resonant circuit of a LEKID consists
of a discrete inductance and capacitance coupled to a feedline. A high and
constant current density distribution in the inductive part of these resonators
makes them very sensitive. Due to only one metal layer on a silicon substrate,
the fabrication is relatively easy. In order to optimize the LEKIDs for this
application, we have recently probed a wide variety of individual resonator and
array parameters through simulation and physical testing. This included
determining the optimal feed-line coupling, pixel geometry, resonator
distribution within an array (in order to minimize pixel cross-talk), and
resonator frequency spacing. Based on these results, a 144-pixel Aluminum array
was fabricated and tested in a dilution fridge with optical access, yielding an
average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2
under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs
has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2
polarizations will be presented. Also first optical measurements of a titanium
nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho
Scavenger 0.1: A Theorem Prover Based on Conflict Resolution
This paper introduces Scavenger, the first theorem prover for pure
first-order logic without equality based on the new conflict resolution
calculus. Conflict resolution has a restricted resolution inference rule that
resembles (a first-order generalization of) unit propagation as well as a rule
for assuming decision literals and a rule for deriving new clauses by (a
first-order generalization of) conflict-driven clause learning.Comment: Published at CADE 201
On the dynamical behavior of the ABC model
We consider the ABC dynamics, with equal density of the three species, on the
discrete ring with sites. In this case, the process is reversible with
respect to a Gibbs measure with a mean field interaction that undergoes a
second order phase transition. We analyze the relaxation time of the dynamics
and show that at high temperature it grows at most as while it grows at
least as at low temperature
Fluorescent oxide nanoparticles adapted to active tips for near-field optics
We present a new kind of fluorescent oxide nanoparticles with properties well
suited to active-tip based near-field optics. These particles with an average
diameter in the range 5-10 nm are produced by Low Energy Cluster Beam
Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission
electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical
photoluminescence, cathodoluminescence and near-field scanning optical
microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in
size are observed. These emitters are validated as building blocks of active
NSOM tips by coating a standard optical tip with a 10 nm thick layer of
YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing
NSOM imaging of test surfaces.Comment: Changes made following Referee's comments; added references; one
added figure. See story on this article at:
http://nanotechweb.org/cws/article/tech/3606
Detection of the tSZ effect with the NIKA camera
We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect
from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors)
based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic
Microwave Background) spectrum produced by the inverse Compton interaction of
CMB photons with the hot electrons of the ionized intra-cluster medium. The
massive, intermediate redshift cluster RX J1347.5-1145 has been observed using
NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging
camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies
of the superconducting resonators are shifted by mm-wave photons absorption.
This tSZ cluster observation demonstrates the potential of the next generation
NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta
(Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at
240GHz, providing in that band also a measurement of the linear polarization.
NIKA2 will be commissioned in 2015.Comment: SF2A Proceedings 201
High resolution SZ observations at the IRAM 30-m telescope with NIKA
High resolution observations of the thermal Sunyaev-Zel'dovich (tSZ) effect
are necessary to allow the use of clusters of galaxies as a probe for large
scale structures at high redshifts. With its high resolution and dual-band
capability at millimeter wavelengths, the NIKA camera can play a significant
role in this context. NIKA is based on newly developed Kinetic Inductance
Detectors (KIDs) and operates at the IRAM 30m telescope, Pico Veleta, Spain. In
this paper, we give the status of the NIKA camera, focussing on the KID
technology. We then present observations of three galaxy clusters: RX
J1347.5-1145 as a demonstrator of the NIKA capabilities and the recent
observations of CL J1226.9+3332 (z = 0.89) and MACS J0717.5+3745 (z = 0.55). We
also discuss prospects for the final NIKA2 camera, which will have a 6.5
arcminute field of view with about 5000 detectors in two bands at 150 and 260
GHz
- âŠ