4 research outputs found
Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.
The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydro-distillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The
in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 μL/mL
Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil
An actinobacterial strain, HG29, with potent activity against pathogenic, toxigenic and phytopathogenic fungi was isolated from a Saharan soil sample of Algeria. On the basis of morphological and chemotaxonomic characteristics, the strain was classified in the genus Streptomyces. Analysis of the 16S rRNA gene sequence showed a similarity level of 99.3% with Streptomyces gancidicus NBRC 15412T. The comparison of its cultural and physiological characteristics with this species revealed significant differences. Moreover, the phylogenetic tree showed that strain HG29 forms a distinct phyletic line within the genus Streptomyces. Production of antifungal activity was investigated by following kinetics in shake broth. The highest antifungal activity was obtained after five days of fermentation, and in the dichloromethane extract. Two active compounds, NK1 and NK2, were purified by HPLC using a C18 column. Their chemical structures were identified through nuclear magnetic resonance experiments and mass spectrometry as oligomycins E and A, respectively, which have not been reported to be produced by S. gancidicus. The two bioactive compounds exhibited significant antifungal activity in vitro, showing minimal inhibitory concentrations (MICs) values between 2 and 75μg/mL
Taxonomy and chemical characterization of antibiotics of Streptosporangium Sg 10 isolated from a Saharan soil
A new actinomycete strain designated Sg 10, producing antimicrobial substances was isolated from an Algerian soil. Morphological and chemical studies indicated that
strain Sg 10 belonged to the genus Streptosporangium. The comparison of its physiological characteristics with those of known species of Streptosporangium showed significant differences with the nearest species Streptosporangium carneum.
Analysis of the 16S rDNA sequence of strain Sg 10 showed a similarity level ranging between 96.3% and 97.8% within Streptosporangium species, with S. carneum the
most closely related. However, the phylogenetic analysis indicated that strain Sg 10
represent a distinct phyletic line suggesting a new genomic species. The antimicrobial activity of strain Sg 10 showed an antibacterial activity against Gram-positive bacteria as well as an antifungal one. Four active products were
isolated from the culture broth using various separation procedures. On the basis of UV-VIS spectrometry, infrared spectroscopy and chemical revelations, the antibiotics
were classified in the group of glycosylated aromatics