3 research outputs found

    A Highly Sensitive Potentiometric Amphetamine Microsensor Based on All-Solid-State Membrane Using a New Ion-Par Complex, [3,3′-Co(1,2-closo-C2B9H11)2]− C9H13NH+

    Get PDF
    In the present work a highly sensitive ion-selective microelectrode for the detection of amphetamine is presented. For this purpose, a novel ion-par complex based on the metallocarborane, cobalt bis(dicarbollide) anion ([3,3′-Co(1,2-C2B9H11)2]−) coupled to amphetamonium cation has been prepared as the active site for amphetamine recognition. The prepared ion-par complex was incorporated to a PVC-type sensitive membrane. It was then drop-casted on the top of a gold microelectrode previously modified with a solid contact layer of polypyrrole. This novel amphetamine microsensor has provided excellent and quick response within the range 10−5 M to 10−3 M of amphetamine concentration, a limit of detection of 12 µM and a slope of 60.1 mV/decade. It was also found to be highly selective toward some potential interference compounds when compared to amphetamine.The authors acknowledge the financial support from the European Union’s Horizon 2020 research and innovation programme entitled MicroMole and HEARTEN grant agreement No. 653626 and No. 643694 respectivel

    A Highly Sensitive Potentiometric Amphetamine Microsensor Based on All-Solid-State Membrane Using a New Ion-Par Complex, [3,3′-Co(1,2-closo-C2B9H11)2]− C9H13NH+

    No full text
    In the present work a highly sensitive ion-selective microelectrode for the detection of amphetamine is presented. For this purpose, a novel ion-par complex based on the metallocarborane, cobalt bis(dicarbollide) anion ([3,3′-Co(1,2-C2B9H11)2]−) coupled to amphetamonium cation has been prepared as the active site for amphetamine recognition. The prepared ion-par complex was incorporated to a PVC-type sensitive membrane. It was then drop-casted on the top of a gold microelectrode previously modified with a solid contact layer of polypyrrole. This novel amphetamine microsensor has provided excellent and quick response within the range 10−5 M to 10−3 M of amphetamine concentration, a limit of detection of 12 µM and a slope of 60.1 mV/decade. It was also found to be highly selective toward some potential interference compounds when compared to amphetamine

    A fully integrated passive microfluidic Lab-on-a-Chip for real-time electrochemical detection of ammonium: Sewage applications

    No full text
    International audienceThe present work reports on the development of a new generation of Lab-on-a-chip (LOC) to perform in-situ and real-time potentiometric measurements in flowing water. The device consisted of two differentiated parts: a poly (dimethylsiloxane) (PDMS) microfluidic structure obtained by soft lithography and a fully integrated chemical sensing platform including four working microelectrodes, two reference microelectrodes and one counter microelectrode for detecting ammonium in a continuous mode. The performance of the device was evaluated following its potentiometric response when analyzing ammonium containing samples. As a key parameter, its time of response was compared to that of a commercially available electrical conductivity sensor used as reference sensor during tests in laboratory using flowing tap water and technical scale using flowing wastewater. As a result, the LOC showed a slope of 55 mV/decade, a limit of detection of 4·10−5 M and a time of full response between 10 and 12 s. It was demonstrated that the device can provide fast and reliable data at real time when immersed in a laminar flow of water. Moreover, the test of robustness showed that it was still functional after immersion in sewage for at least 15 min. Besides, the LOC reported here can be helpful for a wide variety of flowing-water applications such as aqua culture outlets control, in-situ and continuous analysis of rivers effluents and sea waters monitoring among others
    corecore