74 research outputs found

    Neurophysiological investigations of drug resistant epilepsy patients treated with vagus nerve stimulation to differentiate responders from non-responders

    Get PDF
    Background and purpose In patients treated with vagus nerve stimulation (VNS) for drug resistant epilepsy (DRE), up to a third of patients will eventually not respond to the therapy. As VNS therapy requires surgery for device implantation, prediction of response prior to surgery is desirable. It is hypothesized that neurophysiological investigations related to the mechanisms of action of VNS may help to differentiate VNS responders from non-responders prior to the initiation of therapy. Methods In a prospective series of DRE patients, polysomnography, heart rate variability (HRV) and cognitive event related potentials were recorded. Polysomnography and HRV were repeated after 1 year of treatment with VNS. Polysomnography, HRV and cognitive event related potentials were compared between VNS responders (>= 50% reduction in seizure frequency) and non-responders. Results Fifteen out of 30 patients became VNS responders after 1 year of VNS treatment. Prior to treatment with VNS, the amount of deep sleep (NREM 3), the HRV high frequency (HF) power and the P3b amplitude were significantly different in responders compared to non-responders (P = 0.007; P = 0.001; P = 0.03). Conclusion Three neurophysiological parameters, NREM 3, HRV HF and P3b amplitude, were found to be significantly different in DRE patients who became responders to VNS treatment prior to initiation of their treatment with VNS. These non-invasive recordings may be used as characteristics for response in future studies and help avoid unsuccessful implantations. Mechanistically these findings may be related to changes in brain regions involved in the so-called vagal afferent network

    Seizures and Interictal Epileptiform Activity in the Rat Collagenase Model for Intracerebral Hemorrhage

    Get PDF
    AimsIntracerebral hemorrhage (ICH) is a known risk factor for the development of acute symptomatic as well as late unprovoked seizures. The underlying pathophysiology of post-ICH seizures is incompletely understood and there are no reliable predictive biomarkers. An animal model to study post-ICH seizures is currently lacking. The aim of this study was to investigate (1) the occurrence of seizures and interictal epileptiform activity in the ICH rat collagenase model using long-term video-EEG monitoring (VEM) and (2) whether seizure occurrence was associated with interictal epileptiform activity and histological features.MethodsMale Sprague-Dawley rats were implanted with epidural electrodes. After 1 week of baseline VEM, collagenase was injected in left striatum to induce an ICH. VEM was continued for 180 days to assess the occurrence of post-ICH seizures and interictal epileptiform activity (spikes and epileptiform discharges). At the end of the experiment, animals were euthanized for histological characterization of the hemorrhagic lesion, using cresyl violet, Prussian blue and immunofluorescence staining.ResultsAcute symptomatic seizures occurred in 4/12 animals between 46 and 80 h after ICH induction. Late unprovoked seizures were present in 2/12 animals and started at 90 and 103 days post-ICH. Animals with late unprovoked seizures did not have acute symptomatic seizures. All electrographic seizures were accompanied by clear behavioral changes. Interictal spikes and epileptiform discharges were observed in all animals but occurred more frequently in rats with late seizures (p = 0.019 and p < 0.001, respectively). Animals with acute symptomatic seizures had more extended hemorrhagic lesions and hemosiderin deposits in the piriform cortex.ConclusionBoth acute symptomatic and late unprovoked seizures were observed in the rat collagenase model. Interictal epileptiform activity was more frequently seen in animals with late seizures. Rats with acute symptomatic seizures showed more extensive lesions and hemosiderin deposits in the piriform cortex. This model could be used to further explore possible biomarkers for epileptogenesis

    Identification of vagus nerve stimulation parameters affecting rat hippocampal electrophysiology without temperature effects

    Get PDF
    Background: Recent experiments in rats have demonstrated significant effects of VNS on hippocampal excitability but were partially attributed to hypothermia, induced by the applied VNS parameters. Objective: To allow meaningful preclinical research on the mechanisms of VNS and translation of rodent results to clinical VNS trials, we aimed to identify non-hypothermia inducing VNS parameters that significantly affect hippocampal excitability. Methods: VNS was administered in cycles of 30 s including either 0.1, 0.16, 0.25, 0.5, 1.5, 3 or 7 s of VNS ON time (biphasic pulses, 250ms/phase, 1 mA, 30 Hz) and the effect of different VNS ON times on brain temperature was evaluated. VNS paradigms with and without hypothermia were compared for their effects on hippocampal neurophysiology in freely moving rats. Results: Using VNS parameters with an ON time/OFF time of up to 0.5 s/30 s did not cause hypothermia, while clear hypothermia was detected with ON times of 1.5, 3 and 7 s/30 s. Relative to SHAM VNS, the normothermic 0.5 s VNS condition significantly decreased hippocampal EEG power and changed dentate gyrus evoked potentials with an increased field excitatory postsynaptic potential slope and a decreased population spike amplitude. Conclusion: VNS can be administered in freely moving rats without causing hypothermia, while profoundly affecting hippocampal neurophysiology suggestive of reduced excitability of hippocampal neurons despite increased synaptic transmission efficiency. (C) 2020 The Authors. Published by Elsevier Inc

    STUDY OF COUMARINS WITH IMPROVED SOLUBILITY TO INHIBIT FXIIa, AN EMERGING TARGET IN THROMBOSIS RESEARCH

    Get PDF
    Thrombotic diseases, in which a deregulated haemostatic activity occurs, remain a major concern in medicine. Anticoagulants are part of the strategies to address these disorders. However current available drugs are still associated with risk of severe bleeding complications and thus, novel antithrombotics are required1.In this perspective, coagulation factor XIIa (FXIIa), a serine protease implicated in the coagulation cascade, recently emerged as a promising target in the development of such agents2. Indeed, it was demonstrated that FXII deficiency or inhibition protects against thrombosis without causing spontaneous bleeding in mice3.Based on these considerations, the aim of our project is to develop novel selective FXIIa inhibitors to detail the exact role of this enzyme in thrombotic diseases. These compounds could also be a good starting point for the development of new antithrombotic drugs. The 3-carboxamide coumarins (figure 1) are to date the only nonpetidic and selective inhibitors of FXIIa described in literature4. However, their low solubility and poor pharmacokinetics resulted in a lack of activity in in vivo models of thrombosis. As consequence, we need to improve these characteristics while keeping the selectivity and potency towards FXIIa.In this work, we first synthesized new coumarins with improved solubility. Their inhibition potency was then measured on FXIIa and finally, their stability was evaluated

    Hypothermia masks most of the effects of rapid cycling VNS on rat hippocampal electrophysiology

    Get PDF
    AIM. Vagus nerve stimulation (VNS) modulates hippocampal dentate gyrus (DG) electrophysiology and induces hypothermia in freely moving rats. This study evaluated whether hippocampal (CA1) electrophysiology is similarly modulated and to what extent this is associated with VNS-induced hypothermia. METHODS. Six freely moving rats received a first 4 h session of rapid cycling VNS (7 s on/18 s off), while CA1 evoked potentials, EEG and core temperature were recorded. In a second 4 h session, external heating was applied during the 3rd and 4th h of VNS counteracting VNS-induced hypothermia. RESULTS. VNS decreased the slope of the field excitatory postsynaptic potential (fEPSP), increased the population spike (PS) amplitude and latency, decreased theta (4-12 Hz) and gamma (30-100 Hz) band power and theta peak frequency. Normalizing body temperature during VNS through external heating abolished the effects completely for fEPSP slope, PS latency and gamma band power, partially for theta band power and theta peak frequency and inverted the effect on PS amplitude. CONCLUSIONS. Rapid cycle VNS modulates CA1 electrophysiology similarly to DG, suggesting a wide-spread VNS-induced effect on hippocampal electrophysiology. Normalizing core temperature elucidated that VNS-induced hypothermia directly influences several electrophysiological parameters but also masks a VNS-induced reduction in neuronal excitability

    Development of a rat model for glioma-related epilepsy

    Get PDF
    Seizures are common in patients with high-grade gliomas (30–60%) and approximately 15–30% of glioblastoma (GB) patients develop drug-resistant epilepsy. Reliable animal models are needed to develop adequate treatments for glioma-related epilepsy. Therefore, fifteen rats were inoculated with F98 GB cells (GB group) and four rats with vehicle only (control group) in the right entorhinal cortex. MRI was performed to visualize tumor presence. A subset of seven GB and two control rats were implanted with recording electrodes to determine the occurrence of epileptic seizures with video-EEG recording over multiple days. In a subset of rats, tumor size and expression of tumor markers were investigated with histology or mRNA in situ hybridization. Tumors were visible on MRI six days post-inoculation. Time-dependent changes in tumor morphology and size were visible on MRI. Epileptic seizures were detected in all GB rats monitored with video-EEG. Twenty-one days after inoculation, rats were euthanized based on signs of discomfort and pain. This study describes, for the first time, reproducible tumor growth and spontaneous seizures upon inoculation of F98 cells in the rat entorhinal cortex. The development of this new model of GB-related epilepsy may be valuable to design new therapies against tumor growth and associated epileptic seizures

    Development of a Rat Model for Glioma-Related Epilepsy

    No full text
    Seizures are common in patients with high-grade gliomas (30–60%) and approximately 15–30% of glioblastoma (GB) patients develop drug-resistant epilepsy. Reliable animal models are needed to develop adequate treatments for glioma-related epilepsy. Therefore, fifteen rats were inoculated with F98 GB cells (GB group) and four rats with vehicle only (control group) in the right entorhinal cortex. MRI was performed to visualize tumor presence. A subset of seven GB and two control rats were implanted with recording electrodes to determine the occurrence of epileptic seizures with video-EEG recording over multiple days. In a subset of rats, tumor size and expression of tumor markers were investigated with histology or mRNA in situ hybridization. Tumors were visible on MRI six days post-inoculation. Time-dependent changes in tumor morphology and size were visible on MRI. Epileptic seizures were detected in all GB rats monitored with video-EEG. Twenty-one days after inoculation, rats were euthanized based on signs of discomfort and pain. This study describes, for the first time, reproducible tumor growth and spontaneous seizures upon inoculation of F98 cells in the rat entorhinal cortex. The development of this new model of GB-related epilepsy may be valuable to design new therapies against tumor growth and associated epileptic seizures

    Comparison of In Vivo and Ex Vivo Magnetic Resonance Imaging in a Rat Model for Glioblastoma-Associated Epilepsy

    No full text
    Magnetic resonance imaging (MRI) is frequently used for preclinical treatment monitoring in glioblastoma (GB). Discriminating between tumors and tumor-associated changes is challenging on in vivo MRI. In this study, we compared in vivo MRI scans with ex vivo MRI and histology to estimate more precisely the abnormal mass on in vivo MRI. Epileptic seizures are a common symptom in GB. Therefore, we used a recently developed GB-associated epilepsy model from our group with the aim of further characterizing the model and making it useful for dedicated epilepsy research. Ten days after GB inoculation in rat entorhinal cortices, in vivo MRI (T2w and mean diffusivity (MD)), ex vivo MRI (T2w) and histology were performed, and tumor volumes were determined on the different modalities. The estimated abnormal mass on ex vivo T2w images was significantly smaller compared to in vivo T2w images, but was more comparable to histological tumor volumes, and might be used to estimate end-stage tumor volumes. In vivo MD images displayed tumors as an outer rim of hyperintense signal with a core of hypointense signal, probably reflecting peritumoral edema and tumor mass, respectively, and might be used in the future to distinguish the tumor mass from peritumoral edema—associated with reactive astrocytes and activated microglia, as indicated by an increased expression of immunohistochemical markers—in preclinical models. In conclusion, this study shows that combining imaging techniques using different structural scales can improve our understanding of the pathophysiology in GB
    • …
    corecore