2 research outputs found

    A New Torque Control System of Permanent Magnet Synchronous Motor

    Get PDF
    The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov's second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics

    Matrix converters for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs

    Get PDF
    The use of matrix converter technologies for the control of actuators and other auxiliaries onboard work-class, deep-sea, remotely operated vehicles (ROVs) is reported. Key requirements for such systems are the ability to sustain operation at high ambient pressures, up to 300 bar, commensurate with operation of ROVs at depths of 3000 m, and to minimise the number of external connections and cabling mass to improve reliability and reduce drag. Emphasis is given to 32 matrix converters for 3f–1f AC voltage/frequency for conversion control of system auxiliaries, with experimental results showing circuit functionality during pressure cycling consistent with typical operational duties, and the use of 33 matrix converters for control of actuators driven by brushless permanent magnet synchronous machines (PMSMs). A principal feature of the paper is the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, it is shown that observer-based state estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters, can be readily exported to matrix converter counterparts with minimal additional computational overhead. Experimental results from a 0.7 kW PMSM driven by a matrix converter, suitable for a subsea actuator pump, are included to demonstrate the ability of the sensorless techniques to provide reliable estimates of machine rotor position under transient load conditions, and the subsequent exploitation for matrix converter/motor combinations is discussed
    corecore