4 research outputs found
Modeling-based optimization approaches for the development of Anti- Agrobacterium tumefaciens activity using Streptomyces sp TN71
A new aerobic bacterium TN71 was isolated from Tunisian Saharan soil and has been selected for its antimicrobial activity against phytopathogenic bacteria. Based on cellular morphology, physiological characterization and phylogenetic analysis, this isolate has been assigned as Streptomyces sp. TN71 strain. In an attempt to increase its anti-Agrobacterium tumefaciens activity, GYM + S (glucose, yeast extract, malt extract and starch) medium was selected out of five different production media and the medium composition was optimized. Plackett-Burman design (PBD) was used to select starch, malt extract and glucose as parameters having significant effects on antibacterial activity and a Box-Behnken design was applied for further optimization. The analysis revealed that the optimum concentrations for anti-A. tumefaciens activity of the tested variables were 19.49 g/L for starch, 5.06 g/L for malt extract and 2.07 g/L for glucose. Several Artificial Neural Networks (ANN): the Multilayer perceptron (MLP) and the Radial basis function (RBF) were also constructed to predict anti-A. tumefaciens activity. The comparison between experimental with predicted outputs from ANN and Response Surface Methodology (RSM) were studied. ANN model presents an improvement of 12.36% in terms of determination coefficients of anti A. tumefaciens activity. To our knowledge, this is the first work reporting the statistical versus artificial intelligence based modeling for optimization of bioactive molecules against phytopathogen
Cloning and characterization of the first actinomycete β-propeller phytase from Streptomyces sp. US42.
International audienceA gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals