73 research outputs found

    The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release

    Get PDF
    SummaryAlix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical “boomerang” folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix

    The inositol phosphatase MTMR4 is a novel target of the ubiquitin ligase Nedd4

    Get PDF
    The inositol phosphatase, MTMR4 (myotubularin-related protein 4), was identified as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4). hMTMR4 (human MTMR4) and Nedd4 co-immunoprecipitated and co-localized to late endosomes. The PY (Pro-Tyr) motif of hMTMR4 binds to WW (Trp-Trp) domains of hNedd4. MTMR4 expression was decreased in atrophying muscle, whereas Nedd4 expression was increased and hMTMR4 was ubiquitinated by hNedd4, suggesting that this novel interaction may underlie the biological process of muscle breakdown

    The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding

    Get PDF
    HIV-1 release is mediated through two motifs in the p6 region of Gag, PTAP and LYPXnL, which recruit cellular proteins Tsg101 and Alix, respectively. The Nucleocapsid region of Gag (NC), which binds the Bro1 domain of Alix, also plays an important role in HIV-1 release, but the underlying mechanism remains unclear. Here we show that the first 202 residues of the Bro1 domain (Broi) are sufficient to bind Gag. Broi interferes with HIV-1 release in an NC–dependent manner and arrests viral budding at the plasma membrane. Similar interrupted budding structures are seen following over-expression of a fragment containing Bro1 with the adjacent V domain (Bro1-V). Although only Bro1-V contains binding determinants for CHMP4, both Broi and Bro1-V inhibited release via both the PTAP/Tsg101 and the LYPXnL/Alix pathways, suggesting that they interfere with a key step in HIV-1 release. Remarkably, we found that over-expression of Bro1 rescued the release of HIV-1 lacking both L domains. This rescue required the N-terminal region of the NC domain in Gag and the CHMP4 binding site in Bro1. Interestingly, release defects due to mutations in NC that prevented Bro1 mediated rescue of virus egress were rescued by providing a link to the ESCRT machinery via Nedd4.2s over-expression. Our data support a model in which NC cooperates with PTAP in the recruitment of cellular proteins necessary for its L domain activity and binds the Bro1–CHMP4 complex required for LYPXnL–mediated budding

    The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Get PDF
    BACKGROUND: Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. RESULTS: We used a CD25 (Tac) chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs) of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN) toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. CONCLUSION: This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly

    Gliadin Peptide P31-43 Localises to Endocytic Vesicles and Interferes with Their Maturation

    Get PDF
    BACKGROUND: Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies

    The ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation

    Get PDF
    The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show an additional role for the ESCRT machinery in HIV-1 release. BST-2/tetherin is a restriction factor that impedes HIV release by tethering mature virus particles to the plasma membrane. We found that HRS, a key component of the ESCRT-0 complex, promotes efficient release of HIV-1 and that siRNA-mediated HRS depletion induces a BST-2/tetherin phenotype. This activity is related to the ability of the HIV-1 Vpu protein to down-regulate BST-2/tetherin. We found that BST-2/tetherin undergoes constitutive ESCRT-dependent sorting for lysosomal degradation and that this degradation is enhanced by Vpu expression. We demonstrate that Vpu-mediated BST-2/tetherin down-modulation and degradation require HRS (ESCRT-0) function and that knock down of HRS increases cellular levels of BST-2/tetherin and restricts virus release. Furthermore, HRS co-precipitates with Vpu and BST-2. Our results provide further insight into the mechanism by which Vpu counteracts BST-2/tetherin and promotes HIV-1 dissemination, and they highlight an additional role for the ESCRT machinery in virus release
    corecore