71 research outputs found

    Compact planetary systems perturbed by an inclined companion: II. Stellar spin-orbit evolution

    Full text link
    The stellar spin orientation relative to the orbital planes of multiplanet systems are becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated to the oscillations of the inclination between the planet system and the outer orbit, and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin-axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star, and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if mutual inclination is only ~ 20 deg, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.Comment: 29 pages, 15 figures, accepted for publication in Ap

    Speed limit on Neptune migration imposed by Saturn tilting

    Full text link
    In this Letter, we give new constraints on planet migration. They were obtained under the assumption that Saturn's current obliquity is due to a capture in resonance with Neptune's ascending node. If planet migration is too fast, then Saturn crosses the resonance without being captured and it keeps a small obliquity. This scenario thus gives a lower limit on the migration time scale tau. We found that this boundary depends strongly on Neptune's initial inclination. For two different migration types, we found that tau should be at least greater than 7 Myr. This limit increases rapidly as Neptune's initial inclination decreases from 10 to 1 degree. We also give an algorithm to know if Saturn can be tilted for any migration law.Comment: 5 pages, 4 figures, published in ApJ

    AMD-stability in presence of first order Mean Motion Resonances

    Full text link
    The AMD-stability criterion allows to discriminate between a-priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the Angular Momentum Deficit (AMD) in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopeadia.Comment: Accepted by A and A 07/10/1

    Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology

    Full text link
    In this paper we present a new approach to tidal theory. Assuming a Maxwell viscoelastic rheology, we compute the instantaneous deformation of celestial bodies using a differential equation for the gravity field coefficients. This method allows large eccentricities and it is not limited to quasi-periodic perturbations. It can take into account an extended class of perturbations, including chaotic motions and transient events. We apply our model to some already detected eccentric hot Jupiters and super-Earths in planar configurations. We show that when the relaxation time of the deformation is larger than the orbital period, spin-orbit equilibria arise naturally at half-integers of the mean motion, even for gaseous planets. In the case of super-Earths, these equilibria can be maintained for very low values of eccentricity. Our method can also be used to study planets with complex internal structures and other rheologies.Comment: 16 pages, 13 figures, 2 table

    Thermal tides in neutrally stratified atmospheres: Revisiting the Earth's Precambrian rotational equilibrium

    Full text link
    Rotational dynamics of the Earth, over geological timescales, have profoundly affected local and global climatic evolution, probably contributing to the evolution of life. To better retrieve the Earth's rotational history, and motivated by the published hypothesis of a stabilized length of day during the Precambrian, we examine the effect of thermal tides on the evolution of planetary rotational motion. The hypothesized scenario is contingent upon encountering a resonance in atmospheric Lamb waves, whereby an amplified thermotidal torque cancels the opposing torque of the oceans and solid interior, driving the Earth into a rotational equilibrium. With this scenario in mind, we construct an ab initio model of thermal tides on rocky planets describing a neutrally stratified atmosphere. The model takes into account dissipative processes with Newtonian cooling and diffusive processes in the planetary boundary layer. We retrieve from this model a closed-form solution for the frequency-dependent tidal torque which captures the main spectral features previously computed using 3D general circulation models. In particular, under longwave heating, diffusive processes near the surface and the delayed thermal response of the ground prove to be responsible for attenuating, and possibly annihilating, the accelerating effect of the thermotidal torque at the resonance. When applied to the Earth, our model prediction suggests the occurrence of the Lamb resonance in the Phanerozoic, but with an amplitude that is insufficient for the rotational equilibrium. Interestingly, though our study was motivated by the Earth's history, the generic tidal solution can be straightforwardly and efficiently applied in exoplanetary settings.Comment: 20 pages (+14 for appendices), 6 figure

    Can one hear supercontinents in the tides of ocean planets?

    Full text link
    Recent observations and theoretical progress made about the history of the Earth-Moon system suggest that tidal dissipation in oceans primarily drives the long term evolution of orbital systems hosting ocean planets. Particularly, they emphasise the key role played by the geometry of land-ocean distributions in this mechanism. However, the complex way continents affect oceanic tides still remains to be elucidated. In the present study, we investigate the impact of a single supercontinent on the tidal response of an ocean planet and the induced tidally dissipated energy. The adopted approach is based on the linear tidal theory. By simplifying the continent to a spherical cap of given angular radius and position on the globe, we proceed to a harmonic analysis of the whole planet's tidal response including the coupling with the solid part due to ocean loading and self-attraction variations. In this framework, tidal flows are formulated analytically in terms of explicitly defined oceanic eigenmodes, as well as the resulting tidal Love numbers, dissipated power, and torque. The analysis highlights the symmetry breaking effect of the continent, which makes the dependence of tidal quantities on the tidal frequency become highly irregular. The metric introduced to quantify this continentality effect reveals abrupt transitions between polar and non-polar configurations, and between small-sized and medium-sized continents. Additionally, it predicts that a continent similar to South America or smaller (30{\deg}-angular radius) does not alter qualitatively the tidal response of a global ocean whatever its position on the planet.Comment: 35 pages, 13 figures, 5 tables. Accepted for publication in Astronomy & Astrophysic

    Tilting Uranus via the migration of an ancient satellite

    Full text link
    Context. The 98{\deg}-obliquity of Uranus is commonly attributed to giant impacts that occurred at the end of the planetary formation. This picture, however, is not devoid of weaknesses. Aims. On a billion-year timescale, the tidal migration of the satellites of Jupiter and Saturn has been shown to strongly affect their spin-axis dynamics. We aim to revisit the scenario of tilting Uranus in light of this mechanism. Methods. We analyse the precession spectrum of Uranus and identify the candidate secular spin-orbit resonances that could be responsible for the tilting. We determine the properties of the hypothetical ancient satellite required for a capture and explore the dynamics numerically. Results. If it migrates over 10 Uranus' radii, a single satellite with minimum mass 4e-4 Uranus' mass is able to tilt Uranus from a small obliquity and make it converge towards 90{\deg}. In order to achieve the tilting in less than the age of the Solar System, the mean drift rate of the satellite must be comparable to the Moon's current orbital expansion. Under these conditions, simulations show that Uranus is readily tilted over 80{\deg}. Beyond this point, the satellite is strongly destabilised and triggers a phase of chaotic motion for the planet's spin axis. The chaotic phase ends when the satellite collides into the planet, ultimately freezing the planet's obliquity in either a prograde, or plainly retrograde state (as Uranus today). Spin states resembling that of Uranus can be obtained with probabilities as large as 80%, but a bigger satellite is favoured, with mass 1.7e-3 Uranus' mass or more. Yet, a smaller ancient satellite is not categorically ruled out, and there is room for improving this basic scenario in future studies. Interactions among several pre-existing satellites is a promising possibility.Comment: Accepted for publication in Astronomy and Astrophysic

    Did atmospheric thermal tides cause a daylength locking in the Precambrian? A review on recent results

    Full text link
    After the initial suggestion by Zahnle and Walker (1987) that the torque accelerating the spin rate of the Earth and produced by the heating of the atmosphere by the Sun could counteract the braking lunir-solar gravitational torque in the Precambrian, several authors have recently revisited this hypothesis. In these studies, it is argued that the geological evidences of the past spin state of the Earth play in favor of this atmospheric tidal locking of the length of the day (LOD). In the present review of the recent literature, we show that the drawn conclusions depend crucially on the consideration of the stromatolite geological LOD estimates obtained by Pannella at 1.88 and 2.0 Ga, which are subject to large uncertainties. When only the most robust cyclostatigraphic estimates of the LOD are retained, the LOD locking hypothesis is not supported. Moreover, the consideration of the published General Circulation Model numerical simulations and of new analytical models for the thermal atmospheric tides suggest that the atmospheric tidal resonance, which is the crucial ingredient for the LOD locking in the Precambrian, was never of sufficiently large amplitude to allow for this tidal LOD lock.Comment: 16 pages, 9 figure
    corecore