287 research outputs found

    LHC main dipoles proposed baseline current ramping

    Get PDF
    Several studies performed from 1994 to 1996 including some in the framework of the Dynamic Effects Working Group, have shown that the magnitude of the magnetic field imperfections generated in the LHC main dipoles depends partly on the shape of the magnetic field ramp. A current ramp optimisation has been carried out with several combinations of mathematical functions. The result of this study is t he proposed baseline current ramp. The graphic representation of this ramp is included in this report. Theoretical dynamic errors expected with this ramp are compared with those produced with a straig ht ramp at constant current rate, thus demonstrating the improvement obtained. A set of formulae and parameters required for the actual calculation of the baseline ramp is given in the Appendix

    Effects of Neutron Irradiation on Pinning Force Scaling in State-of-the-Art Nb3Sn Wires

    Full text link
    We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 * 10^22 m^-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.Comment: 8 page

    Field Errors Decay and "Snap-Back" in LHC Model Dipoles

    Get PDF
    The magnetic field in accelerator magnets decays when the current is kept constant during the particles injection phase, and returns quickly (snaps back) to the original values as soon as ramping is restarted. Here we show results of measurements of the decay of the field errors in 10 m long LHC model dipole magnets. In accordance with previous findings, precycles and stops at intermediate current levels influence the decay. We discuss a possible mechanism causing the decay and snap-back, based on the internal field change in the cable

    Analytical Solution for the Current Distribution in Multistrand Superconducting Cables

    Get PDF
    Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady state conditions

    Coupling Current and AC Loss in LHC Superconducting Quadrupoles

    Get PDF
    One of the issues for the operation of the LHC accelerator at CERN are the field errors generated by coupling currents in the superconducting cables of the main dipoles and quadrupoles, especially during the initial phase of the energy ramp from injection conditions. Coupling current effects have already been measured in the superconducting dipoles, and results are reported elsewhere. This paper reports similar measurements that we have recently performed on different types of LHC superconducting quadrupoles (arc quadrupole, dispersion suppressor and matching section quadrupoles) to quantify the above effects and compare them to the values specified from the beam tolerances. Loss and field errors due to ramping are mainly determined by the contact resistance Rc between the strands of the magnets cables. In this paper the Rc is calculated for several quadrupoles measured using both the measured energy loss and the magnetic field errors during ramping of magnets

    Dependence of the Static and Dynamic Field Quality of the LHC Superconducting Dipole Magnets on the Pre-Cycle Ramp Rate

    Get PDF
    The allowed multipoles in the Large Hadron Collider (LHC) superconducting dipole magnets decay whilst on a constant current plateau. It is known that the decay amplitude is largely affected by the powering history of the magnet, and particularly by the pre-cycle flat top current and duration and the pre-injection preparation duration. Recently, it was observed that the decay amplitude is also highly dependent on the pre-cycle ramp rate, which has an indirect effect also on the sample of data taken at constant field along the magnet loadlines. This is an important consideration to be included in the Field Description for the LHC (FiDeL), to cope with the difference between the test procedure followed for series tests and the expected cycles during the machine operation. This paper presents the results of the measurements performed to investigate this phenomenon and describes the method included in FiDeL to represent this dependence

    A VME-based LabVIEW system for the magnetic measurements of the LHC prototype dipoles

    Get PDF
    A magnetic measurement system based on a set of rotating harmonic coils has been integrated together with the coil positioning and rotation control, the associated data acquisition and the power supply control using a PC. This PC is a mono-board VME module with its networking connection, local hard disk and serial interfaces. The PC communicates with its peripheral devices (the controller embedded in the power converter, the coil positioning PLC and the coil rotation hardware) via RS-232C lines and acquires data using VME modules: in-house designed voltage integrators for the magnetic measurement and a commercial ADC for real-time measurements. The software is a LabVIEW application: it handles and synchronizes the peripheral devices of the measurement system and the real-time tasks related to the data acquisition; it constitutes a man-machine interface for the operator and also directly stores field maps onto a file server. The system is operational on the test benches and has proved reliable, user-friendly and performed as expected.
    • …
    corecore