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1. Introduction 
 

Conductors designed and built for large-scale superconducting AC applications and for 

DC magnets are cables made by twisting strands or tapes in concentric layers or, 

alternatively, braids made by interlacing strands. Strands based on low-temperature 

superconductors consist of thousands of superconducting filaments with typical diameters 

in the range from 5 to 50 microns, extruded in a normal metal matrix. Tapes of high-

temperature superconductors are flat ribbons containing twisted or untwisted filaments 

with typical size in the 10 to 100 microns range. For most power applications the strands 

and tapes have a characteristic size much smaller than the cable size, and thus their 

internal structure can be ignored. 

The strands and tapes are twisted or transposed in order to reduce the induced circulation 

currents and the resulting AC loss generated by time dependent external magnetic fields. 

The transposition is generally incomplete due to the following two main reasons: 

• the single strands and sub-cables in a twisted cable are still coupled with the self field 

generated by the transport current; 

• often the strands do not link the same flux, as for example in an ideally transposed 

cable subjected to a field with longitudinal gradient, or in the case of manufacturing 

deviations from the ideal, perfectly transposed geometry. An example of particular 

relevance is superconducting dipoles for particle accelerators, where the cable 

bending over the magnet ends causes a strong longitudinal field gradient. 

In order to study current distribution phenomena in multistage superconducting cables, 

we have developed in the past years a distributed parameters model that allows to 

calculate current distribution in very long cables used in magnets due to a substantial 

decrease of the number of the unknowns of the problem [1-6]. The model is a special 

case of a multi-conductor transmission line for which standard theory is available in the 

field of electrical engineering. As we will show in this paper, another remarkable 

advantage of this formulation as compared to the lumped parameters network model is 

the possibility to find an analytical solution of the governing equations. 
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Several authors have undertaken analytical treatment of current distribution and 

redistribution under much simplified conditions (e.g. two-strand cables) [7-12]. In 

particular, Turck [7] analyzed current sharing between two non-insulated coupled 

superconducting wires, with and without superficial oxides. He showed that an 

equilibrium current sharing imposed at the cable ends propagates axially along the 

composite to produce current redistribution. This propagation is achieved with a magnetic 

diffusivity dependent on the interstrand contact resistance and on the mutual coupling 

between the strands. In [8, 9] the analytical solution was also applied to the analysis of 

current redistribution in the presence of faulty wires or short circuits between strands. 

Ries [10] has used an analytic approximation for the current sharing among quenching 

strands either insulated or soldered, in a study aimed at determining the stability of a 

multi-strand cable. The analytical approximation was used to estimate the power 

dissipated during the thermal transient and the characteristic time necessary for current 

distribution. 

More recently Krempasky and Schmidt [11] have given the analytical solution of the 

equation of current diffusion in a two-strand cable and applied it to the study of long 

range “supercurrents” induced by longitudinal variations of the time derivative of the 

magnetic field applied to the cable. The evaluation of the strand currents in the presence 

of a generic current cycle was obtained by considering two different analytical solutions 

of the equation of current diffusion in the presence of field ramps (forced diffusion), and 

during constant field phases (free diffusion). Due to the linearity of the model, the final 

currents in the two strands were evaluated by a superposition of the effects of different 

ramps and constant field phases. 

Mitchell [12] used an approximate analytical model of a two-strand cable derived using 

the same model as the one described in [11] to study the effect of current redistribution 

from a normal zone on the stability margin of a cable. The approximate model assumes 

that the strands portion where the current redistribution takes place is in superconducting 

state. 

In this work we extend the analytical solution of the equations of current diffusion to 

cables made of a generic number of strands and compare it to numerical simulations in 
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both transient conditions and steady state regimes. The solution is given for any 

multistrand superconducting cable that satisfies specific symmetry and periodicity 

conditions on the matrices of mutual inductances and interstrand resistances. These 

conditions are generally met in cables with high degree of spatial symmetry, such as 

Rutherford cables or power transmission cables. As we will discuss later on, symmetry 

and periodicity conditions are met on average also in bundled cables such as those used 

in Cable-in-Conduit Conductors (CICCs), both at the level of the single strands, as well 

as at the level of strand bundles taken as “superstrands” with homogenized properties. 

Our general solution reduces to the solution given in [11] when a two-strand cable 

exposed to a localized external flux change is considered. As we will show, it is however 

possible to derive directly an analytical solution also in the case of cables made of equal 

strands, thus enlarging significantly the possibility of fast scoping and parametric studies. 

A comparison to numerical results obtained in the case of a short cable subjected to a 

variable field with a step distribution in space is used to validate the analytical solution 

presented. 

 
2. Model Description 
 

The model for the current distribution in a superconducting cable is based on the 

distributed parameters circuit description discussed in detail in [3-6]. The model assumes 

that each strand carries a current uniformly distributed in its cross section, and thus 

neglects the coupling currents that flow inside each strand among the twisted 

superconducting filaments. 

The key postulate in the model is the hypothesis that the current can flow continuously 

from each strand to all the other strands through distributed contacts. Similarly the 

longitudinal voltages, e.g. induced by a time dependent external magnetic field dB/dt, are 

also distributed along the cable length. A schematic representation of the equivalent 

distributed parameters model of the cable (for three strands) is shown in Fig. 1. 
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Fig. 1.  Distributed parameters circuit model of the elemental mesh of cable used to describe 
current distribution in multistrand superconducting cables. 
 
 
The N strands have initial currents ii and voltages Vi at the coordinate x (with i = 1, N). 

Over an elemental length dx the currents change by dii because of current transfer across 

the interstrand contact resistances Ri,j = 1/(gi,j dx), where gi,j is the interstrand 

conductance per unit length between the i-th and j-th strand. The voltages drop by dVi 

due to the parallel resistance, inductive voltages, and the voltage source vi
ext. 

Applying the Kirchhoff’s current and voltage laws to the distributed parameters circuit, 

we obtain the following systems of partial differential equations: 

ext

tx
vilirv

+
∂

−−=
∂
∂

∂
 (1) 

vgi
=

∂
∂

x
 (2). 

The vectors i and v contain the N strand currents and voltages respectively, and l, r, g, are 

the system inductance, resistance and conductance matrices of dimension N × N. The 

elements of l are the inductance coefficients among strands li,j, defined on a unit length 

basis. The matrix r is diagonal, and the elements ri,i are the longitudinal strand resistances 

per unit of strand length. The system conductance matrix is defined as follows: 
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We come to a single system of partial differential equations for the currents in the strands 

taking the space derivative of equation (2), and assuming that the interstrand 

conductances are uniform along the cable axis: 

02

2

=−+
∂
∂

+
∂
∂ ext

xt
gvgriiigl  (4). 

Equation (4) is a system of parabolic differential equations that describes the current 

diffusion along the cable generated by field or current ramps. 

The system of equations (4) must be complemented by an appropriate choice of the 

boundary and initial conditions. Different choices of boundary conditions are possible for 

the study of current distribution in multistrand cables [2, 3], implying different analytical 

solutions. For our study we take a generic initial current distribution within the cable, but 

we make the assumption of uniform current distribution among the different cable strands 

at the cable ends: 

( ) ( )( )

( ) ( ) ( )
Nh

N
ti

tLxitxi

xtx

op
hh ,,1with,,0

0, 0

K=====

== ii
 (5) 

where iop is the total operation current flowing in the cable. The particular choice made in 

Equation (5) was used because it was directly investigated experimentally [13]. 
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3. Main Assumptions and Analytical Solution 
 

The model described in Section 2 is still too general to allow a complete analytical 

treatment. To proceed with the solution we consider the simpler case in which all the 

strands have the same longitudinal resistance r (and r = 0 if the strands are in the 

superconducting state). In this case the matrix r can be also written as r I, where I is the 

unit matrix. To find the analytical solution of Eq. (4) we need the eigenvalues and 

eigenvectors of matrices g and l. These can be obtained analytically when the matrices of 

mutual inductances l and transverse conductances g are symmetric and circulant [14], i. e: 

ai,j = aj,i, with i, j = 1, … , N 

ai,1 = ai−1,N, ai,j = ai−1,j−1, with i, j = 2, … , N 

where aij is a generic element of either matrix g or l. The symmetry implied by hypothesis 

a) is obvious for both matrices and any cable geometry because of the physical symmetry 

of the coefficients of mutual inductances and contact conductances. The circularity 

condition b) corresponds physically to the fact that the matrices must be invariant for a 

longitudinal translation of the cable by a length characteristic of the cable periodicity. 

This condition is generally met in several practical cases either exactly or on average. 

In order to expand on the physical implications of hypothesis b) we take as an example an 

infinite, straight length of Rutherford cable with N strands. In this case the self inductance 

of the strands, i.e. the diagonal terms li,i of the inductance matrix l, are all identical as 

each strand follows the same path along the cable length apart for a rigid translation by an 

integer multiple of Lp/N, where Lp is the cable twist pitch, which does not affect the value 

of the inductance. In addition if we take any couple of strands i and j these are 

geometrically not distinguishable from the couple of strands i − k and j − k apart for a 

rigid longitudinal translation by –k Lp/N. This translation does not affect inductances and 

we can therefore write that lij = ll−k,j−k. The two properties above guarantee that in the case 

of a Rutherford cable the inductance matrix is circulant, as also verified in [6] through 3-

D numerical calculations. 
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We now turn our attention to the conductance matrix g. In a Rutherford cable two types 

of different contacts can be identified. Adjacent strands have continuous contacts along 

the cable length, while non adjacent strands only have two contacts per twist pitch. If we 

suppose cross contact conductances to be uniform both along the cable length and across 

the cable width, we have only two possible different values for the interstrand contact 

conductances: ga for adjacent strands, and gc for non adjacent strands. The terms 

appearing in the conductance matrix are then gi,i = 0 by definition,  gi,i+1 = gi,i−1 = ga for 

adjacent strands, and gi,j = gc for all other terms. Once again the high degree of spatial 

symmetry of the cable guarantees that also the conductance matrix g satisfies the 

circularity condition b). 

The same reasoning and similar arguments can be used to show that other single-stage 

common cable configurations such as strand triplets or quadruplets also result in circulant 

conductance and inductance matrices. For multi-stage cables the conductance and 

inductance matrices can have a complex structure that is no longer exactly circulant. In 

general, however, cables are designed so that they are fully transposed with respect to 

external field changes. This implies that for a length longer than the transposition length a 

strand in the cable cannot be distinguished from any other strand, and the properties of all 

strands are the same. As a result the conductance and inductance matrices are expected to 

be circulant on average. 

Under the hypotheses discussed above, the analytical solution of Eq. (4) is the following: 

( ) ( ) ( )( ) ( )( ) ( ) ( )τξτ−ξτξ+ξξξ+= ∫∫∫ ,,,2,,2,
00

00

0
0

ext
tLL

op txdd
L

txd
LN

ti
tx vKiKbi  (6) 

where L is the cable length, while the vector b0 and the integration kernels K(0) and K are 

defined in Appendices A and B. The first term in the solution Eq. (6) corresponds to the 

uniform current distribution, while the second and the third term give the current 

imbalance due respectively to the initial conditions i(0)(x) and to the external longitudinal 

voltages vext(x,t). The solution Eq. (6) is very general, and can be applied to any current 

cycle as well as any space and time dependent external field applied to the cable. 
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In the case that the transient starts from zero cable current iop(0) = 0, and if vext is 

independent of time, as is the case for ramps of current and field with constant rate, the 

solution Eq. (6) can be simplified as follows: 

( ) ( ) ( ) ( )ξξξ+= ∫ ext
L

op txd
LN

ti
tx vKbi ,,*2,

0
0  (7) 

where the integration kernel K* is defined in Appendix B. In cases of very long 

transients, and with the boundary conditions assumed in (5), the strand currents reach a 

steady-state regime whose pattern depends only on the external voltage and on the 

longitudinal resistance per unit length. In order to calculate the regime currents we can 

write Eq. (10) in the following form: 

( ) ( ) ( ) ( )ξ∞ξξ+
∞

=∞ ∫ ext
L

op xd
LN

i
x vKbi ,,*2,

0
0  (8) 

where iop(∞) is the regime value of the transport current, and the regime value of the 

kernel K*(x,ξ, ∞) can be obtained directly from the definitions reported in Appendix B. 

Equation (7) can be finally solved specializing the space dependence of the external 

voltage vext. The simplest case that can be considered is when the external voltage is 

piecewise constant along the cable length, defined by the series of vectors mext ,v  relative 

to the M space intervals [xm, xm+1], with m = 1, …, M. In this case the integration of the 

kernel K* can be performed analytically, and the resulting current distribution is given by 

the following expression: 

( ) ( ) ( )∑
=

++=
M

m

mextmmop xxtx
N
ti

tx
1

,1
0 ,;,**2, vKbi  (9). 

where the matrix K** is given in closed form in Appendix B. Equation (9) provides the 

complete solution sought for the current distribution problem represented by the system 

of Eqs. (4) in the case of time invariant, piecewise constant external voltage. 
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4. Cables Consisting of Equal Strands under Localized Voltage Excitation 
 

In the case of cables consisting of equal strands that cannot be distinguished, it is possible 

to simplify to a large extent the solution given in the previous section. We consider in 

particular cables with uniform longitudinal conductance gi,j = g. We assume further that 

the self inductances li,i and mutual inductances li,j are the same for all the strands and 

strand couples and we indicate them with l and m respectively. The symmetry and 

circularity conditions can be verified easily. The cable is subjected to a longitudinal 

voltage with amplitude vext lasting for a time t1 and localized over a short length δ placed 

in the middle of the cable, as would be generated, for instance, by a change of magnetic 

flux linked to a cable transposition error. The cable has length L, no longitudinal 

resistance and zero transport current. The following sections give the analytical solutions 

for a two-strand cable as well as a cable of N strands. 

 

4.1 Two-strand cable 

In the simple case of a two-strand cable it is possible to show that the general solution  

Eq. (6) can be reduced to the simple expressions found in [11]. The details on how to 

reduce the general solution to the case of two strands can be found in Appendix C. In 

accordance with [11] we define the parameters w = (L − δ )/2, α = πw/L. The current in 

the first strand is given by: 

( ) ( ) ( )∑
∞

=

− 





−=

odd 
1

/
211 sinsin114,

n
n

t n
w

xne
n

Itxi n αα
πα

τ  (10) 

where the regime current for the case of a two-strand cable is given by 

( )extext vvwgI 211 2
−=

δ  (11) 

and the time constant τ is defined as follows: 

( )
2

2 





−=

π
τ Lmlg  (12) 

The current in the second strand i2 is identical in module to i1 but has opposite sign. In the 

form of Eq. (10) the solution found is identical to Eq. (29) of [11] for the so-called 
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supercurrents. If the external voltage source disappears at time t1, the supercurrents start 

a free decay from the value reached at t1. Each component under the sum in (10) decays 

with its own time constant τn (see [11] and Appendix C): 

( ) ( ) ( ) nn tt

n
n

t en
w

xne
n

Itxi ττ αα
πα

/)(

odd  
1

/
211

11 sinsin114, −−
∞

=

−∑ 





−=  (13). 

In Fig. 2 we show the evolution of the current in the first strand of a two-strand cable of 

length L = 2.3 m caused by a voltage source in the first strand extv1 of 10 µV/m localized in 

the center of the cable with δ = 0.1 m and acting for a time t1 equal to 10 s. No voltage 

was applied in the second strand. Because of symmetry, only one half of the cable length 

is plotted in Fig. 2. The cable self and mutual inductances are l = 0.5 µH/m and 

m = 0.25 µH/m, while the conductance is g = 7.463 MS/m, so that the time constant τ is  

2 s. The current rises under the voltage difference, approaching steady-state conditions 

for times much longer than the time constant. As soon as the voltage source is removed 

the current diffuses and decays. Note finally that once normalized by the regime current, 

the results of Fig. 2 would be the same for any combination of inductances and 

conductance leading to the same time constant. 

 

  
Fig. 2.  Evolution of the current in the first strand of a two-strand cable with the parameters 
discussed in the text and subjected to a localised longitudinal voltage source. The current is 
normalised to the maximum current I1. The localised voltage source acts in the center of the cable 
for a time t1 equal to 5 τ, and is equal to zero after this time. The left plot reports the current rise 
under the external voltage for t < t1, while the right plot shows the current decay for t > t1. 
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4.2 N -strand cable 

The results found for the two-strand cables can be generalized to the case of an N strand 

cable using the definitions given in Appendices A and B and the methodology 

demonstrated in Appendix C for the case of two strands. For this case we only give the 

final result for the current in the i–th strand: 

( ) ( ) ( )∑
∞

=

− 





−=

oddn
n

t
ii n

w
xne

n
Itxi n

1

/
2 sinsin114, αα

πα
τ  (14) 

where the regime current for strand i is defined as follows: 

( )∑
≠
=

−=
N

ij
j

ext
j

ext
ii vvwgI

12
δ  (15). 

Equation (15) has a clear resemblance to the definition of the regime current for two 

strands, Eq. (11). For the case of N strands however the contributions of the (N-1) couples 

of strands in the cable add-up to the total current flowing in one strand. The time constant 

τ is given by: 

( )
2







−=

π
τ LmlNg  (16) 

which is a factor N/2 larger than for a two-strand cable. All other quantities are defined as 

for the case of two strands. As in the two-strand cable, if at time t1 the external voltage 

source disappears the induced currents start a free decay given by: 

( ) ( ) ( ) nn tt

n
n

t
ii en

w
xne

n
Itxi ττ αα

πα
/)(

odd 
1

/
2

11 sinsin114, −−
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=
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−=  (17) 

We have taken the same parameter values used in the example shown in Fig. 2 to study 

the solution obtained for the N-strand cable as a function of the number of strands. In 

particular we have considered the case when a single strand is subjected to an external 

voltage source, extv1 , with all other voltages equal to zero. This case allows a direct 

comparison of results, and any general case can be obtained as a linear combination of 

the single strand excitation. The solution obtained for the evolution of the current in the 

centre of the cable is shown in Fig. 3 for values of N = 2, 3, 4 and 5. In accordance with 



 12

Eq. (15), the induced current in the first strand for the general case has a total regime 

value that is (N-1) times larger than in the two-strand case, and the distribution evolves 

with a time constant that is N/2 times longer. Note however that if we normalise the 

current in the first strand to its regime value and we consider the current distribution at 

the same normalised time t/τ, the solutions for the first strand is independent of N and has 

the same profile plotted in Fig. 2. The currents in all other strands are negative and equal 

in magnitude, as can be seen writing Eq. (15) explicitly for the case considered. 

 

 

  

  

 
Fig. 3.  Evolution of the strand currents in the center of cables made of few strands with the same 
conditions considered in Fig. 2. The current in the first strand is positive, while the currents in all 
other strands are negative and equal to each other. 
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5. Comparison to Numerical Simulations 
 

For large number of strands, and for complex geometries, the intricacies of the resulting 

equations make the analytical solution difficult to manage. Therefore to validate the 

complete analytic solution we have compared the analytical result given by Eq. (6) to the 

transient and steady state numerical solution of the current diffusion Eq. (4) in the case of 

a 16-strand Rutherford cable subject to a time varying magnetic field. For this test we 

have taken the same conditions considered in [15]. We have simulated a length L of 3.5 

m of cable with a twist pitch Lp equal to 100 mm. The cross contact conductances are 

taken equal to 20 MS/m for non-adjacent strands and to 2 MS/m for adjacent strands. We 

have considered the cable as exposed to a time-dependent magnetic field perpendicular to 

its broad face. The time derivative of the field is equal to 0 for x < L/2, while it is taken 

equal to 0.01 T/s for x > L/2 (see Fig. 4). This leads to a position-dependent voltage vext. 

As in [15], the strands have a constant and uniform longitudinal effective strand 

resistance r per unit length. We have computed the resulting current, also called 

“Boundary Induced Coupling Currents” (BICCs) in [15], during their generation and 

development for a value r = 1.54 10−8 Ω/m. 

dB
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s) 0.
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x (m)

3.5

0

1.75 1.75

Rutherford cable

dB
/d

t(
T/

s) 0.
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x (m)

3.5

0

1.75 1.75

Rutherford cable

 
 

Fig. 4.  Field derivative along the Rutherford cable, producing the voltage source used for the 
numerical simulation of Figs. 5 and 6. 
 
The comparison of transient numerical simulation and analytical solution is reported in 

Figs. 5 and 6. Figure 5 shows the evolution of the current in the center of the cable (i.e. 

x=1.75 m) for two strands arbitrarily selected. Figure 6 shows the steady state reached 

after a sufficiently long time in the same strands. Numerical and analytical values of the 
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strand currents agree as expected. Because of the presence of a space-dependent source 

term vext, we have performed the integral on the right hand side of Eq. (6) numerically, 

with an adaptive gaussian integration. In practical cases the time required for the 

integration of Eq. (6) can be large, especially when the vector vext is strongly dependent 

on position. This is typical in cables with incomplete transposition, where the external 

voltage has a periodic oscillation in space with period equal to the cable twist pitch. The 

presence of the oscillation in space causes slow convergence of the numerical integration. 

As already discussed, a remarkable reduction of calculation time, without significant loss 

of precision, can be obtained performing the integral in Eq. (6) analytically, assuming the 

external voltages to be piecewise constant along the cable and summing up all the 

contributions as in Eq. (9). 

 

Fig. 5.  Comparison between 
analytical and numerical solution of 
the time dependent strand currents 
induced in a 16-strand Rutherford 
cable exposed to a localized change 
in the applied magnetic flux density 
perpendicular to the broad face of the 
cable. The current in the center of the 
cable is plotted for two arbitrarily 
selected strands. 
 

 

 

 

 
Fig. 6.  Comparison between 
analytical and numerical solution of 
the regime solution for the strand 
currents in a 16-strand Rutherford 
cable subjected to a localized change 
in the applied magnetic flux density 
perpendicular to the broad face of the 
cable. 
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Conclusions 

We have presented and discussed an analytical approach to the study of current 

distribution in multi-strand superconducting cables. Current diffusion among cable 

strands has been described by a system of parabolic partial differential equations. The 

system has been solved analytically in special but relevant cases that correspond either 

exactly or on average to typical multi-strand cables. The correctness of the analytical 

solution was demonstrated by comparison to published results and to numerical solutions 

of the original system of partial differential equations in transient and steady state. 

The analytical solution found has by nature an involved structure that in practical cases of 

large cables with position-dependent voltage sources still requires numerical calculation 

of integral kernels involving the evaluation of infinite series. As a result the calculation 

time can become large, so that the method described here is not practical for large-scale 

analyses. In this respect the analytical solution that we have presented here has an interest 

for use only in special cases, e.g. as a benchmark for numerical codes. 

The main advantage of the analytical approach is that it can be used to obtain closed-form 

solutions in simple cases such as an ideal cable made of few strands. Indeed we have 

shown that the expression found in the literature for current diffusion in a two-strand 

cable can be obtained as a special case of our solution. In addition we have used the fact 

that our solution is more general in its formulation to extend the known expressions to 

more complicated geometries, such as a triplet and quadruplets of strands. The analytical 

solution in this case provides insight in the behaviors and thus gives the possibility to 

explore scaling when extrapolating to large number of strands. 
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Appendix A. Eigenvalues and Eigenvectors of the Inductance and Conductance 

Matrices 

Due to complexity of the mathematical treatment, in this Appendix we report the 

definitions necessary to calculate the eigenvectors and eigenvalues used in the analytical 

solutions reported in the previous sections. For a detailed derivation of the results 

reported in this appendix we refer to [16]. We distinguish the case of an odd and even 

number of strands N. We start defining an integer p given by: 

N even N odd 

2
Np =  

2
1−

=
Np  

Given the square N × N, circulant, symmetric and positive-definite matrix l it can be 

shown [14] that the N eigenvalues of l are positive and are given by: 

 

N even N odd 

( ) ( ) k
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sk l

p
ksll 11cos2 1,1
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+=λ
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s
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with k = -(p-1), …, p with k = -p, …, p 

Moreover, given the square N × N, circulant and symmetric g such that ∑
≠
=

−=
N

k
k

kgg
1
1

111  the 

N eigenvalues of g are all negative (except for the lowest eigenvalue γ0 which is null) and 

given by: 
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with k = -(p-1), …, p with k = -p, …, p 
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The orthonormal spectral basis b consists of N vectors, each vector having N components 

defined as follows: 

 

N even N odd 
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with q = 1 , …, p-1 with q = 1 , …, p 
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Appendix B. Integration Kernels 

The integration kernels used in Eq. (6) are defined as follows: 

( )( ) ( )
( )
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kkk txtx
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where: 
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n

L
xnetx kk  (B.3) 

 

If the current distribution is initially uniform, so that all components in the vector i(0)(x) 

have the same value, and the external voltage source is time-independent, the time 

integration on the right hand side of Eq. (6) can be performed analytically, leading to the 

simpler solution Eq. (7). The integration kernel of Eq. (7) is defined in this case as 

follows: 

( ) ( )
( )
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≠

−−= λ
ξΓ=ξ
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k
pk k

T
kk

k txtx
0

1
,,*,,* bbK  (B.4) 

 

where the function Γk* is obtained from the time integral of Γk: 

( ) ( ) tdtxtx
t

kk ′′Γ=Γ ∫0
,,,,* ξξ  (B.5) 

 

The integration of Eq. (B.5) using the definition of Eq. (B.3) is straightforward: 
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where we have introduced the time constant τk for the eigenmode k, defined as follows: 

2







−=

π
γλτ L

kkk  (B.7) 

 

As anticipated, a fast integration of the integral in Eq. (7) can be performed when the 

external voltage can be approximated as piecewise constant, defined by the series of 

vectors mext ,v  relative to the space interval [xm, xm+1], with m = 1, …, M. In this case the 

current distribution is computed using Eq. (9), where the kernel K** is obtained 

integrating Eq. (B.4) in space as follows: 
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where we have defined the function Γk** as follows: 
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The result of the integral in Eq. (B.9) is: 
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In the form given above the analytical solution is expressed as an infinite series of 

trigonometric functions. The terms in the series are of oscillating nature, and although 

convergence to a finite solution is guaranteed, the summation must be extended on  

a large number of terms to achieve a good accuracy. For this reason it is more convenient 

to transform the above series as described in [16]. The resulting expressions are 

considerably more complex and are not reported here. 
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Appendix C. Solution for a Two-strand Cable for Localised Voltage Excitation 

In this section we show how to specialize the general analytic solution to the case of a 

two-strand cable. The source term is a localised longitudinal voltage, as e.g. due to a 

transposition error for a cable subjected to a change of the external magnetic field. This 

case has been already studied extensively in [11]. In order to achieve comparable results 

to those reported in [11], we start from the same hypotheses: 

• zero total operating current iop (t) = 0; 

• zero longitudinal resistance r = 0; 

• uniform longitudinal conductance per unit length g; 

• uniform self and mutual inductances per unit length, l and m respectively; 

• external voltage excitation constant for a time t1 and limited to a short length δ placed 

in the middle of the cable; 

• cable length L multiple of an even number of twist pitches. 
 

The external voltage per unit length is constant over the interval [x1, x2] and zero outside 

the interval, where the extremes of the interval are given by: 

2
1 δ−

=
Lx  (C.1) 

2
2 δ+

=
Lx  (C.2) 

This case is obtained with our formalism taking a single space interval with constant 

voltage, i.e. M = 1. The voltage over this interval is 1,extv , corresponding to the single 

space interval defined by m = 1. We write the voltage vector in terms of the voltages on 

the strands as follows: 

( ) ( ) ( )ttUtU
v
v

t ext

ext
ext −








= 1

2

11,v  (C.3) 

where U(θ) is the Heavyside function and extv1 , extv2  are the voltages per unit length in the 

space interval (the index in the superscript has been dropped for simplicity) and for each 
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of the two strands (indicated by the index in the subscript). The matrices l and g for a 

two-strand cable are the following: 
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lm
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l  (C.4) 

 









−
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gg
gg

g  (C.5) 

 

and the eigenvalues of matrices l and g defined in Appendix A are given by:  
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 (C.7). 

 

According to Eq. (B.7), the only time constant that is non-zero is τ1, that we indicate 

simply with τ: 

( )
22

11 2 
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ππ
γλτ LgmlL  (C.8) 

 

that has the same definition as in [11]. The basis bk, with k = {0, 1}, is given by: 

[ ]11
2

1
0 = Tb  (C.9) 

[ ]11
2

1
1 −= Tb  (C.10) 

 

As the external voltage is a function of time, the general solution in this case is obtained 

from Eq. (6) that in the case of zero initial and total cable current can be simplified as 

follows: 
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( ) ( ) ( )θξθξθξ ,,,2, 1,

00

ext
tL

txdd
L

tx vKi −= ∫∫  (C.11). 

Equation (C.11) can be integrated in time using the definiti0on of Eq. (C.3). For t ≤ t1 the 

time integral of Eq. (C.11) leads to the same solution given by Eq. (9) where we take 

iop(t)=0 and the sum over the constant voltage intervals in space extends over a single 

interval, M=1, or: 

( ) ( ) 1,21,;,**2, extxxtxtx vKi =  (C.12). 

Substituting the definition of K** from Eq. (B.8), recalling that in this case p = 1 so that 

the sum in Eq. (B.8) has a single term, and expanding the vector products, we obtain: 
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The definition of the function Γ1** is given in Eq. (B.10) where we take r = 0. 

Substituting in Eq. (C.13) we obtain: 
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To show that Eq. (C.14) leads to the result obtained in [11] we introduce the following 

groups of parameters: 

L
L
2

δπα −
=  (C.15). 

2nn
ττ =  (C.16). 

2
δ−

=
Lw  (C.17). 

( )extext vvgwI 211 2
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and we make the additional assumption that δ << L. In this case we have that [16]: 

( ) ( ) ( )






≅





 +

−





 −

evenn

oddnn
L

n

L
Ln

L
Ln

for0

forsin
2

cos
2

cos απδδπδπ  (C.19). 

Using the above definitions and results, and after some manipulations, we can rewrite  

Eq. (C.14) in the following form: 
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The current in the two strands has the same amplitude but opposite sign. The current in 

the first strand is then simply given by: 
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which is identical to the result of [11] that we wished to achieve. After the voltage pulse, 

i.e. for t > t1, the solution for the current decay can be obtained from Eq. (6) decomposing 

the time integral as follows: 
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By definition ( )θξ ,1,extv  is zero for t > t1, so that the second integral on the right hand 

side of Eq. (C.22) disappears. Using now the change of variable θθ −=′ t  we have that: 

( ) ( ) ( )θξθξθξ ′′′= ∫∫
−

,,,2, 1,

10

ext
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tt

L
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L

tx vKi  (C.23). 

where now ( )θξ ′,1,extv  is constant for ttt ≤′≤− θ1 . The double integral in Eq. (C.23) 

leads then to the same primitives already defined for the general solution, and in 

particular: 

( ) ( ) ( ) 1,21
1

1,21 ,;,**2,;,**2, extext xxttxxxtxtx vKvKi −−=  (C.24). 
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Equation (C.24) can be transformed as outlined above, leading to: 
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that corresponds to the results found in [11], and namely that each component of order n 

has a free decay with the time constant τn from the current reached at time t1. 




