470 research outputs found
Space Shuttle operational logistics plan
The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented
Small Contributions to the Structure Function
The gluon contributions to in are
calculated taking into account the transverse momentum of the initial state
parton. In comparison with collinear factorization , is not
affected at large but takes smaller values in the small range. The
onset of the effect is a function of .Comment: 4 p., postscript encoded with uufiles; DESY 94--14
Multiple-Scattering Series For Color Transparency
Color transparency CT depends on the formation of a wavepacket of small
spatial extent. It is useful to interpret experimental searches for CT with a
multiple scattering scattering series based on wavepacket-nucleon scattering
instead of the standard one using nucleon-nucleon scattering. We develop
several new techniques which are valid for differing ranges of energy. These
techniques are applied to verify some early approximations; study new forms of
the wave-packet-nucleon interaction; examine effects of treating wave packets
of non-zero size; and predict the production of 's in electron scattering
experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9
Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992
Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented
Diffractive vector meson electroproduction at small Bjorken within GPD approach
We study light vector meson electroproduction at small within the
generalized parton distributions (GPDs) model. The modified perturbative
approach is used, where the quark transverse degrees of freedom in the vector
meson wave function and hard subprocess are considered. Our results on the
cross section and spin observables are in good agreement with experimentComment: 6 pages, 5 figures, presented at Symmetries and Spin meeting, Prague,
8- 14 July, 200
Systematic Analysis Method for Color Transparency Experiments
We introduce a data analysis procedure for color transparency experiments
which is considerably less model dependent than the transparency ratio method.
The new method is based on fitting the shape of the A dependence of the nuclear
cross section at fixed momentum transfer to determine the effective attenuation
cross section for hadrons propagating through the nucleus. The procedure does
not require assumptions about the hard scattering rate inside the nuclear
medium. Instead, the hard scattering rate is deduced directly from the data.
The only theoretical input necessary is in modelling the attenuation due to the
nuclear medium, for which we use a simple exponential law. We apply this
procedure to the Brookhaven experiment of Carroll et al and find that it
clearly shows color transparency: the effective attenuation cross section in
events with momentum transfer is approximately $40\ mb\ (2.2\
GeV^2/Q^2)$. The fit to the data also supports the idea that the hard
scattering inside the nuclear medium is closer to perturbative QCD predictions
than is the scattering of isolated protons in free space. We also discuss the
application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request),
report # KU-HEP-92-2
Top Quark Production Cross Section
The production rate for top quarks at the Fermilab Tevatron is presented
using the exact order corrected cross section and the resummation
of the leading soft gluon corrections in all orders of perturbation theory.Comment: preprint FERMILAB-Pub-93/270-T, ITP-SB-93-55, THU-93/23, Latex 9
pages, 8 postscript figures, uuencoded and appended at end of fil
Multivariate Fitting and the Error Matrix in Global Analysis of Data
When a large body of data from diverse experiments is analyzed using a
theoretical model with many parameters, the standard error matrix method and
the general tools for evaluating errors may become inadequate. We present an
iterative method that significantly improves the reliability of the error
matrix calculation. To obtain even better estimates of the uncertainties on
predictions of physical observables, we also present a Lagrange multiplier
method that explores the entire parameter space and avoids the linear
approximations assumed in conventional error propagation calculations. These
methods are illustrated by an example from the global analysis of parton
distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program
made available; Normalization of Hessian matrix changed to HEP standar
Leading-Log Effects in the Resonance Electroweak Form Factors
We study log corrections to inelastic scattering at high Bjorken x for Q^2
from 1 to 21 GeV^2. At issue is the presence of log corrections, which can be
absent if high x scattering has damped gluon radiation. We find logarithmic
correction of the scaling curve extrapolated to low Q^2 improves the duality
between it and the resonance plus background data in the Delta region,
indicating log corrections exist in the data. However, at W > 2 GeV and high x,
the data shows a (1-x)^3 form. Log corrections in one situation but not in
another can be reconciled by a W- or Q^2- dependent higher twist correction.Comment: 13 pages, report nos. RPI-94-N90 and WM-94-106, revtex, two figures
(available by fax or post
Hadron Helicity Violation in Exclusive Processes: Quantitative Calculations in Leading Order QCD
We study a new mechanism for hadronic helicity flip in high energy hard
exclusive reactions. The mechanism proceeds in the limit of perfect chiral
symmetry, namely without any need to flip a quark helicity. The fundamental
feature of the new mechanism is the breaking of rotational symmetry of the hard
collision by a scattering plane in processes involving independent quark
scattering. We show that in the impulse approximation there is no evidence for
of the helicity violating process as the energy or momentum transfer is
increased over the region 1 GeV^2 < Q^2 < 100 GeV^2. In the asymptotic region
Q^2> 1000 GeV^2, a saddle point approximation with doubly logarithmic accuracy
yields suppression by a fraction of power of Q^2. ``Chirally--odd" exclusive
wave functions which carry non--zero orbital angular momentum and yet are
leading order in the high energy limit, play an important role.Comment: uuencoded LaTeX file (21 pages) and PostScript figure
- …