28 research outputs found

    Timing is everything: the regulation of type III secretion

    Get PDF
    Type Three Secretion Systems (T3SSs) are essential virulence determinants of many Gram-negative bacteria. The T3SS is an injection device that can transfer bacterial virulence proteins directly into host cells. The apparatus is made up of a basal body that spans both bacterial membranes and an extracellular needle that possesses a channel that is thought to act as a conduit for protein secretion. Contact with a host-cell membrane triggers the insertion of a pore into the target membrane, and effectors are translocated through this pore into the host cell. To assemble a functional T3SS, specific substrates must be targeted to the apparatus in the correct order. Recently, there have been many developments in our structural and functional understanding of the proteins involved in the regulation of secretion. Here we review the current understanding of protein components of the system thought to be involved in switching between different stages of secretion

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication

    Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism.

    Get PDF
    The effectors of enterocyte invasion by Shigella are dependent on a type III secretion system that contains a needle whose length average does not exceed 50 nm. Previously, we reported that Spa32 is required for needle length control as well as to switch substrate specificity from MxiH to Ipa proteins secretion. To identify functional domains of Spa32, 11 truncated variants were constructed and analysed for their capacity (i) to control the needle's length; (ii) to secrete the Ipa proteins; and (iii) to invade HeLa cells. Deletion at either the N-terminus or C-terminus affect Spa32 function in all cases, but Spa32 variants lacking internal residues 37-94 or 130-159 retained full Spa32 function. Similarly, a Spa32 variant obtained by inserting of the YscP's ruler domain retained Spa32 function although it programmed slightly elongated needles. Using the GST pull-down assay, we show that residues 206-246 are required for Spa32 binding to the C-terminus of Spa40, an inner membrane protein required for Ipa proteins secretion. Our data clearly demonstrate that shortening Spa32 affects the length of the needle in a comparable manner to the spa32 mutant, indicating that the control of needle length does not require a molecular ruler mechanism.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    The Limitations of the Rheumatogenic Concept for Group A Streptococcus: Systematic Review and Genetic Analysis

    No full text
    BACKGROUND: The concept that a minority of group A streptococcus (GAS) emm types are more "rheumatogenic" than others has been widely disseminated. We aimed to provide a comprehensive list of acute rheumatic fever-associated GAS isolates and assess the presence of associated rheumatogenic motifs. METHODS: Articles reporting GAS emm-type or emm-type-specific antibody responses associated with rheumatic fever were identified from 1 January 1944 to 31 July 2018. The revised Jones criteria were used to define rheumatic fever with a maximum period of 4 weeks between disease onset and microbiological characterization. A database of 175 representative M-protein sequences was used to analyze the protein diversity of rheumatic fever-associated strains in a phylogenetic tree and to identify the presence of 10 previously recognized rheumatogenic motifs. RESULTS: We included 411 cases of rheumatic fever, for which microbiological characterization identified 73 different emm types associated with the disease. The classic rheumatogenic emm types represented only 12.3% of the 73 emm types and were responsible for 31.6% of the 411 clinical cases. Rheumatic fever-associated emm types were disseminated throughout the phylogeny, suggesting they belong to various genetic backgrounds. Rheumatic fever-associated motifs were present in only 15.1% of the rheumatic fever-associated emm types and only 24.8% of clinical cases. CONCLUSIONS: The concept of rheumatogenicity should be extended to include strains other than those classically described. Our results highlight significant knowledge gaps in the understanding of rheumatic fever pathogenesis and suggest that a GAS vaccine candidate should offer broad coverage against a variety of GAS genetic variants in order to protect against this serious sequela

    The Limitations of the Rheumatogenic Concept for Group A Streptococcus: Systematic Review and Genetic Analysis.

    No full text
    The concept that a minority of group A streptococcus (GAS) emm types are more "rheumatogenic" than others has been widely disseminated. We aimed to provide a comprehensive list of acute rheumatic fever-associated GAS isolates and assess the presence of associated rheumatogenic motifs.info:eu-repo/semantics/publishe

    Updated emm-typing protocol for Streptococcus pyogenes

    No full text
    Objectives: PCR-based typing of the emm gene Streptococcus pyogenes often results in the amplification of multiple bands. This has resulted in the misclassification of strains into types based on non-emm gene sequences. We aimed to improve the specificity of the emm typing PCR reaction using a primer called CDC3, the sequence for which has been previously used to identify emm genes in silico. Methods: The proposed primer CDC3 was validated in silico from a global database of 1688 GAS genomes and in vitro with 32 isolates. PCR reactions were performed on genomic DNA from each isolate, using the published CDC1 forward primer with the CDC2 reverse primer or the new CDC3 reverse primer. The products were examined by gel electrophoresis, and representative PCR products were sequenced. Results: In 1688 S. pyogenes genomes, the previous CDC2 reverse primer annealed in silico in 1671 emm genes and also in 2109 non emm genes in close proximity, whereas the new CDC3 primer annealed in 1669 emm genes only. The remaining 19 genes without a CDC3 binding site were chimeric emm genes. The PCR pair CDC1+CDC3 produced a single band at appropriate molecular weight in all 32 isolates tested, while the CDC1+CDC2 pair produced more than one band in 13 of 32 isolates (40%). Conclusions: The new CDC3 primer is more specific for emm genes than the previous CDC2 primer and represents a simple solution to reduce the potential for mistyping S. pyogenes strains

    The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri

    Get PDF
    The type III secretion apparatus (T3SA) is a central virulence factor of many Gram-negative bacteria. Its overall morphology consists of a cytoplasmic region, inner- and outer-membrane sections and an extracellular needle. In Shigella, the length of the needle is regulated by Spa32. To understand better the role of Spa32 we searched for its interacting partners using a two-hybrid screen in yeast. We found that Spa32 interacts with the 33 C-terminal residues (CC*) of Spa40, a member of the conserved FlhB/YscU family. Using a GST pull-down assay we confirmed this interaction and identified additional interactions between Spa40 and the type III secretion components Spa33, Spa47, MxiK, MxiN and MxiA. Inactivation of spa40 abolished protein secretion and led to needleless structures. Genetic and functional analyses were used to investigate the roles of residues L310 and V320, located within the CC* domain of Spa40, in the assembly of the T3SA. Spa40 cleavage, at the conserved NPTH motif, is required for assembly of the T3SA and for its interaction with Spa32, Spa33 and Spa47. In contrast, unprocessed forms of Spa40 interacted only with MxiA, MxiK and MxiN. Our data suggest that the conformation of the cytoplasmic domain of Spa40 defines the multi-step assembly process of the T3SA.
    corecore