811 research outputs found

    Spectral Energy Distributions of Gamma Ray Bursts Energized by External Shocks

    Get PDF
    Sari, Piran, and Narayan have derived analytic formulas to model the spectra from gamma-ray burst blast waves that are energized by sweeping up material from the surrounding medium. We extend these expressions to apply to general radiative regimes and to include the effects of synchrotron self-absorption. Electron energy losses due to the synchrotron self-Compton process are also treated in a very approximate way. The calculated spectra are compared with detailed numerical simulation results. We find that the spectral and temporal breaks from the detailed numerical simulation are much smoother than the analytic formulas imply, and that the discrepancies between the analytic and numerical results are greatest near the breaks and endpoints of the synchrotron spectra. The expressions are most accurate (within a factor of ~ 3) in the optical/X-ray regime during the afterglow phase, and are more accurate when epsilon_e, the fraction of swept-up particle energy that is transferred to the electrons, is <~ 0.1. The analytic results provide at best order-of-magnitude accuracy in the self-absorbed radio/infrared regime, and give poor fits to the self-Compton spectra due to complications from Klein-Nishina effects and photon-photon opacity.Comment: 16 pages, 7 figures, ApJ, in press, 537, July 1, 2000. Minor changes in response to referee report, corrected figure

    Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY

    Get PDF
    Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≀6.5, but not pH ≄7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution

    Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f1/f Noises generated by Gaussian Free Fields

    Full text link
    We compute the distribution of the partition functions for a class of one-dimensional Random Energy Models (REM) with logarithmically correlated random potential, above and at the glass transition temperature. The random potential sequences represent various versions of the 1/f noise generated by sampling the two-dimensional Gaussian Free Field (2dGFF) along various planar curves. Our method extends the recent analysis of Fyodorov Bouchaud from the circular case to an interval and is based on an analytical continuation of the Selberg integral. In particular, we unveil a {\it duality relation} satisfied by the suitable generating function of free energy cumulants in the high-temperature phase. It reinforces the freezing scenario hypothesis for that generating function, from which we derive the distribution of extrema for the 2dGFF on the [0,1][0,1] interval. We provide numerical checks of the circular and the interval case and discuss universality and various extensions. Relevance to the distribution of length of a segment in Liouville quantum gravity is noted.Comment: 25 pages, 12 figures Published version. Misprint corrected, references and note adde

    Multiwavelength Observations of GX 339-4 in 1996. I. Daily Light Curves and X-ray and Gamma-Ray Spectroscopy

    Get PDF
    As part of our multiwavelength campaign of GX 339-4 observations in 1996 we present our radio, X-ray, and gamma-ray observations made in July, when the source was in a hard state (= soft X-ray low state). The radio observations were made at the time when there was a possible radio jet. We show that the radio spectrum was flat and significantly variable, and that the radio spectral shape and amplitude at this time were not anomalous for this source. Daily light curves from our pointed observation July 9-23 using OSSE, from BATSE, and from the ASM on RXTE also show that there was no significant change in the X- and gamma-ray flux or hardness during the time the possible radio jet-like feature was seen. The higher energy portion of our pointed RXTE observation made July 26 can be equally well fit using simple power law times exponential (PLE) and Sunyaev-Titarchuk (ST) functions. An additional soft component is required, as well as a broad emission feature centered on 6.4 keV. This may be an iron line that is broadened by orbital Doppler motions and/or scattering off a hot medium. Its equivalent width is 600 eV. Our simplistic continuum fitting does not require an extra reflection component. Both a PLE and a ST model also fit our OSSE spectrum on its own. Although the observations are not quite simultaneous, combining the RXTE and CGRO spectra we find that the PLE model easily fits the joint spectrum. However, the ST model drops off too rapidly with increasing energies to give an acceptable joint fit.Comment: Submitted to Astrophysical Journal. 25 pages. 11 figure

    Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons

    Get PDF
    The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.Comment: 7 pages, 8 Postscript figure

    Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9

    Get PDF
    CRISPR/Cas9 technologies have been employed for genome editing to achieve gene knockouts and knock-ins in somatic cells. Similarly, certain endogenous genes have been tagged with fluorescent proteins. Often, the detection of tagged proteins requires high expression and sophisticated tools such as confocal microscopy and flow cytometry. Therefore, a simple, sensitive and robust transcriptional reporter system driven by endogenous promoter for studies into transcriptional regulation is desirable. We report a CRISPR/Cas9-based methodology for rapidly integrating a firefly luciferase gene in somatic cells under the control of endogenous promoter, using the TGFÎČ-responsive gene PAI-1. Our strategy employed a polycistronic cassette containing a non-fused GFP protein to ensure the detection of transgene delivery and rapid isolation of positive clones. We demonstrate that firefly luciferase cDNA can be efficiently delivered downstream of the promoter of the TGFÎČ-responsive gene PAI-1. Using chemical and genetic regulators of TGFÎČ signalling, we show that it mimics the transcriptional regulation of endogenous PAI-1 expression. Our unique approach has the potential to expedite studies on transcription of any gene in the context of its native chromatin landscape in somatic cells, allowing for robust high-throughput chemical and genetic screens

    Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares

    Full text link
    We propose to search for gravitational waves from PKS 2155-304 as well as other blazars. PKS 2155-304 emitted a long duration energetic flare in July 2006, with total isotropic equivalent energy released in TeV gamma rays of approximately 104510^{45} ergs. Any possible gravitational wave signals associated with this outburst should be seen by gravitational wave detectors at the same time as the electromagnetic signal. During this flare, the two LIGO interferometers at Hanford and the GEO detector were in operation and collecting data. For this search we will use the data from multiple gravitational wave detectors. The method we use for this purpose is a coherent network analysis algorithm and is called {\tt RIDGE}. To estimate the sensitivity of the search, we perform numerical simulations. The sensitivity to estimated gravitational wave energy at the source is about 2.5×10552.5 \times 10^{55} ergs for a detection probability of 20%. For this search, an end-to-end analysis pipeline has been developed, which takes into account the motion of the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in response to referee comment

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    A Possible Emission Feature in an X-ray Afterglow of GRB970828 as a Radiative Recombination Edge

    Get PDF
    A gamma-ray burst of 28 August 1997 was localized by the All-Sky Monitor on the Rossi XTE satellite and its coordinates were promptly disseminated. An ASCA followup started 1.17 days after the burst as a Target of Opportunity Observation and detected an X-ray afterglow. The spectral data displayed a hump around ~5 keV and an absorption column of 7.1 x 10^21 cm^{-2}. This hump structure is likely a recombination edge of iron in the vicinity of the source, taking account of the redshift z = 0.9578 found for the likely host galaxy of the associated radio flare. Radiative Recombination edge and Continuum model can interpret the spectrum from highly ionized plasma in a non equilibrium ionization state. The absorption could be also due to the medium presumably in the vicinity of the GRB.Comment: To appear in the Astrophysical Journal Letters, 13 pages including 2 figures.(Companion paper: Yonetoku et al. (2001)

    Spin-boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent

    Full text link
    We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Forster resonant energy transfer.Comment: More extended version, to appear in Journal of Physics: Condensed Matter. 13 pages, 3 figure
    • 

    corecore