19 research outputs found

    Scaling in cosmic structures

    Full text link
    The study of the properties of cosmic structures in the universe is one of the most fascinating subject of the modern cosmology research. Far from being predicted, the large scale structure of the matter distribution is a very recent discovery, which continuosly exhibits new features and issues. We have faced such topic along two directions; from one side we have studied the correlation properties of the cosmic structures, that we have found substantially different from the commonly accepted ones. From the other side, we have studied the statistical properties of the very simplified system, in the attempt to capture the essential ingredients of the formation of the observed structures.Comment: 10 pages, 3 figures. Accepted for pubblication in Fractals

    Clustering in N-Body gravitating systems

    Full text link
    Self-gravitating systems have acquired growing interest in statistical mechanics, due to the peculiarities of the 1/r potential. Indeed, the usual approach of statistical mechanics cannot be applied to a system of many point particles interacting with the Newtonian potential, because of (i) the long range nature of the 1/r potential and of (ii) the divergence at the origin. We study numerically the evolutionary behavior of self-gravitating systems with periodical boundary conditions, starting from simple initial conditions. We do not consider in the simulations additional effects as the (cosmological) metric expansion and/or sophisticated initial conditions, since we are interested whether and how gravity by itself can produce clustered structures. We are able to identify well defined correlation properties during the evolution of the system, which seem to show a well defined thermodynamic limit, as opposed to the properties of the ``equilibrium state''. Gravity-induced clustering also shows interesting self-similar characteristics.Comment: 6 pages, 5 figures. To be published on Physica

    Gravitational clustering in N-body simulations

    Full text link
    In this talk we discuss some of the main theoretical problems in the understanding of the statistical properties of gravity. By means of N-body simulations we approach the problem of understanding the r\^ole of gravity in the clustering of a finite set of N-interacting particles which samples a portion of an infinite system. Through the use of the conditional average density, we study the evolution of the clustering for the system putting in evidence some interesting and not yet understood features of the process.Comment: 5 pages, 1 figur

    A topological approach to neural complexity

    Full text link
    Considerable efforts in modern statistical physics is devoted to the study of networked systems. One of the most important example of them is the brain, which creates and continuously develops complex networks of correlated dynamics. An important quantity which captures fundamental aspects of brain network organization is the neural complexity C(X)introduced by Tononi et al. This work addresses the dependence of this measure on the topological features of a network in the case of gaussian stationary process. Both anlytical and numerical results show that the degree of complexity has a clear and simple meaning from a topological point of view. Moreover the analytical result offers a straightforward algorithm to compute the complexity than the standard one.Comment: 6 pages, 4 figure

    Universality of power law correlations in gravitational clustering

    Get PDF
    We present an analysis of different sets of gravitational N-body simulations, all describing the dynamics of discrete particles with a small initial velocity dispersion. They encompass very different initial particle configurations, different numerical algorithms for the computation of the force, with or without the space expansion of cosmological models. Despite these differences we find in all cases that the non-linear clustering which results is essentially the same, with a well-defined simple power-law behaviour in the two-point correlations in the range from a few times the lower cut-off in the gravitational force to the scale at which fluctuations are of order one. We argue, presenting quantitative evidence, that this apparently universal behaviour can be understood by the domination of the small scale contribution to the gravitational force, coming initially from nearest neighbor particles.Comment: 7 pages, latex, 3 postscript figures. Revised version to be published in Europhysics Letters. Contains additional analysis showing more directly the central role of nearest neighbour interactions in the development of power-law correlation

    Clustering in gravitating N-body systems

    Full text link
    We study gravitational clustering of mass points in three dimensions with random initial positions and periodic boundary conditions (no expansion) by numerical simulations. Correlation properties are well defined in the system and a sort of thermodynamic limit can be defined for the transient regime of cluste ring. Structure formation proceeds along two paths: (i) fluid-like evolution of density perturbations at large scales and (ii) shift of the granular (non fluid) properties from small to large scales. The latter mechanism finally dominates at all scales and it is responsible for the self-similar characteristics of the clustering.Comment: 7 pages, 3 figures. Accepted for publication in Europhys. Let

    Initial conditions, Discreteness and non-linear structure formation in cosmology

    Get PDF
    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0P(0)=0, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on the dynamical evolution of gravitational clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G. Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st

    Basic properties of galaxy clustering in the light of recent results from the Sloan Digital Sky Survey

    Full text link
    We discuss some of the basic implications of recent results on galaxy correlations published by the SDSS collaboration. In particular we focus on the evidence which has been recently presented for the scale and nature of the transition to homogeneity in the galaxy distribution, and results which describe the dependence of clustering on luminosity. The two questions are in fact strictly entangled, as the stability of the measure of the amplitude of the correlation function depends on the scale at which the mean density becomes well defined. We note that the recent results which indicate the convergence to well defined homogeneity in a volume equivalent to that of a sphere of radius 70 Mpc/h, place in doubt previous detections of ``luminosity bias'' from measures of the amplitude of the correlation function. We emphasize that the way to resolve these issues is to first use, in volume limited samples corresponding to different ranges of luminosity, the unnormalized two point statistics to establish the scale (and value) at which the mean density becomes well defined. We note also that the recent SDSS results for these statistics are in good agreement with those obtained by us through analyses of many previous samples, confirming in particular that the galaxy distribution is well described by a fractal dimension D ~ 2 up to a scale of at least 20 Mpc/h. We discuss critically the agreement of this new data with current theoretical models.Comment: 6 pages, 1 figure. Revised version with minor corrections. To be published in Astronomy and Astrophysic

    Fractals vs. halos: Asymptotic scaling without fractal properties

    Full text link
    Precise analyses of the statistical and scaling properties of galaxy distribution are essential to elucidate the large-scale structure of the universe. Given the ongoing debate on its statistical features, the development of statistical tools permitting to discriminate accurately different spatial patterns is highly desiderable. This is specially the case when non-fractal distributions have power law two-point correlation functions, which are usually signatures of fractal properties. Here we review some possible methods used in the literature and introduce a new variable called "scaling gradient". This tool and the conditional variance are shown to be effective in providing an unambiguous way for such a distinction. Their application is expected to be of outmost importance in the analysis of upcoming galaxy catalogues.Comment: 7 pages, 3 figure
    corecore