3,062 research outputs found

    Rehabilitation Machine for Bariatric Individuals

    Get PDF
    Obesity is known to be growing worldwide. The World Health Organization (WHO) reports that obesity has tripled since 1975. In 2016, 39% of adults over 18 years old were overweight, and 13% were obese. Obesity is mostly preventable by adopting lifestyle improvements, enhancing diet quality, and doing physical exercise. The workload of the physical exercises should be proportionate to the patient’s capabilities. However, it must be considered that obese people are not used to training; they may not endure physical exertion and, even more critically, they could have some psychological impediments to the workouts. Physical exercises and equipment must, therefore, guarantee comfort and prevent situations in which the bariatric individual may feel inadequate. For these reasons, this study aims to design an innovative system to approach simple physical activities, like leg and arm exercises, to bariatric users to enable them to recover mobility and muscle tone gradually. The leading feature of this architecture is the design of hidden exercise mechanisms to overcome the psychological barriers of the users toward these kinds of machines. This paper proposes the initial design of the main sub-systems composing the rehabilitation machine, namely the leg curl and leg extension mechanism and its control architecture, the upper body exercises system, and a series of regulation mechanisms required to accommodate a wide range of users. The proposed functional design will then lead to the development of a prototype to validate the machine

    On the Suspension Design of Paquitop, a Novel Service Robot for Home Assistance Applications

    Get PDF
    The general and constant ageing of the world population that has been observed in the last decade has led robotics researchers community to focus its aims to answer the ever-growing demand for health care, housing, care-giving, and social security. Among others, the researchers at Politecnico di Torino are developing a novel platform to enhance the performance offered by present-day issues, and to assess many others which were not even taken into consideration before they have been highlighted by the pandemic emergency currently in progress. This situation, in fact, made dramatically clear how important it is to have reliable non-human operators whom one can trust when the life of elderly or weak patients is endangered by the simple presence of other people. The platform, named Paquitop, features an innovative architecture conceived for omni-directional planar motion. The machine is designed for domestic, unstructured, and variously populated environments. Therefore, the mobile robot should be able to avoid or pass over small obstacles, passing through the capability to achieve specific person tracking tasks, and arriving to the need of operating with an high dynamic performance. Given its purpose, this work addresses the design of the suspension system which enables the platform to ensure a steady floor contact and adequate stability in every using condition. Different configurations of such system are then presented and compared through use-case simulations
    • …
    corecore