532 research outputs found

    Extensive regulation of metabolism and growth during the cell division cycle

    Full text link
    Yeast cells grown in culture can spontaneously synchronize their respiration, metabolism, gene expression and cell division. Such metabolic oscillations in synchronized cultures reflect single-cell oscillations, but the relationship between the oscillations in single cells and synchronized cultures is poorly understood. To understand this relationship and the coordination between metabolism and cell division, we collected and analyzed DNA-content, gene-expression and physiological data, at hundreds of time-points, from cultures metabolically-synchronized at different growth rates, carbon sources and biomass densities. The data enabled us to extend and generalize an ensemble-average-over-phases (EAP) model that connects the population-average gene-expression of asynchronous cultures to the gene-expression dynamics in the single-cells comprising the cultures. The extended model explains the carbon-source specific growth-rate responses of hundreds of genes. Our data demonstrate that for a given growth rate, the frequency of metabolic cycling in synchronized cultures increases with the biomass density. This observation underscores the difference between metabolic cycling in synchronized cultures and in single cells and suggests entraining of the single-cell cycle by a quorum-sensing mechanism. Constant levels of residual glucose during the metabolic cycling of synchronized cultures indicate that storage carbohydrates are required to fuel not only the G1/S transition of the division cycle but also the metabolic cycle. Despite the large variation in profiled conditions and in the time-scale of their dynamics, most genes preserve invariant dynamics of coordination with each other and with the rate of oxygen consumption. Similarly, the G1/S transition always occurs at the beginning, middle or end of the high oxygen consumption phases, analogous to observations in human and drosophila cells.Comment: 34 pages, 7 figure

    Coordination of growth rate, cell cycle, stress response, and metabolic activity in

    Get PDF
    We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate, phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent of the “Warburg effect ” in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we predict (in both continuous and batch cultures) an “instantaneous growth rate. ” This concept is useful in interpreting the system-level connections among growth rate, metabolism, stress, and the cell cycle
    corecore