9 research outputs found

    Nonhuman primate adenoviruses for use as oncolytic agents

    Get PDF
    Nonhuman primate adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This raises the question whether nonhuman primate adenoviruses could also be employed for viral oncolysis in human patients. The research in this thesis provides a rational and data-supported decision on the use of nonhuman primate adenoviruses as a base for the development of new oncolytic derivatives with limited neutralizing immunity in the human population. Moreover, the development of a potent new gorilla-derived oncolytic adenovirus named GoraVir shows the feasibility of the approach. Hopefully, this research provides some reassurance regarding the future use of replication-competent nonhuman primate adenovirus vectors as therapeutic agents.Stichting Overleven met AlvleesklierkankerLUMC / Geneeskund

    Nonhuman primate adenoviruses of the human adenovirus B species are potent and broadly acting oncolytic vector candidates

    Get PDF
    The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.Therapeutic cell differentiatio

    Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models

    Get PDF
    Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.Experimental cancer immunology and therap

    Nonhuman primate adenoviruses for use as oncolytic agents

    No full text
    Nonhuman primate adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This raises the question whether nonhuman primate adenoviruses could also be employed for viral oncolysis in human patients. The research in this thesis provides a rational and data-supported decision on the use of nonhuman primate adenoviruses as a base for the development of new oncolytic derivatives with limited neutralizing immunity in the human population. Moreover, the development of a potent new gorilla-derived oncolytic adenovirus named GoraVir shows the feasibility of the approach. Hopefully, this research provides some reassurance regarding the future use of replication-competent nonhuman primate adenovirus vectors as therapeutic agents.</p

    Non-human primate-derived adenoviruses for future use as oncolytic agents?

    Get PDF
    Non-human primate (NHP)-derived adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This proffers the question whether NHP-derived adenoviruses could also be employed for viral oncolysis in human patients. While vaccine vectors are conventionally made as replication-defective vectors, in oncolytic applications replication-competent viruses are used. The data on NHP-derived adenoviral vectors obtained from vaccination studies can only partially support the suitability of NHP-derived adenoviruses for use in oncolytic virus therapy. In addition, the use of NHP-derived adenoviruses in humans might be received warily given the recent zoonotic infections with influenza viruses and coronaviruses. In this review, we discuss the similarities and differences between human- and NHP-derived adenoviruses in view of their use as oncolytic agents. These include their genome organization, receptor use, replication and cell lysis, modulation of the host's immune responses, as well as their pathogenicity in humans. Together, the data should facilitate a rational and data-supported decision on the suitability of NHP-derived adenoviruses for prospective use in oncolytic virus therapy

    Herpesvirus microRNAs for use in gene therapy immune-evasion strategies

    No full text
    Therapeutic cell differentiatio

    Adenovirus receptor expression in cancer and its multifaceted role in oncolytic adenovirus therapy

    Get PDF
    Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer

    Genome Analyses of Ten New Ape Adenoviruses with Similarity to Human Mastadenovirus C

    No full text
    The adenoviruses (AdVs) isolated from humans are taxonomically grouped in seven different species in the Mastadenovirus genus (HAdV-A through G). AdVs isolated from apes are often included in one of the human AdV species. Here we describe the sequence analyses of ten new AdVs that are related to the HAdV-C species and that were isolated from healthy western lowland gorillas, bonobos, chimpanzees, and orangutans kept in Dutch zoos. We analyzed these viruses and compared their genome sequences to those of human- and ape-derived AdV sequences in the NCBI GenBank database. Our data demonstrated that the ape-derived viruses clustering to HAdV-C are markedly distinct from the human HAdV-C species in the size and nucleotide composition (%GC) of their genome, differ in the amino-acid sequence of AdV proteins, and have longer RGD-loops in their penton-base proteins. The viruses form three well-separated clades (the human, the gorilla, and the combined group of the bonobo and chimpanzee viruses), and we propose that these should each be given species-level ranks. The Ad-lumc005 AdV isolated from orangutans was found to be very similar to the gorilla AdVs, and bootstrap inference provided evidence of recombination between the orangutan AdV and the gorilla AdVs. This suggests that this virus may not be a genuine orangutan AdV but may have been transferred from a gorilla to an orangutan host

    Genome Analyses of Ten New Ape Adenoviruses with Similarity to Human Mastadenovirus C

    No full text
    The adenoviruses (AdVs) isolated from humans are taxonomically grouped in seven different species in the Mastadenovirus genus (HAdV-A through G). AdVs isolated from apes are often included in one of the human AdV species. Here we describe the sequence analyses of ten new AdVs that are related to the HAdV-C species and that were isolated from healthy western lowland gorillas, bonobos, chimpanzees, and orangutans kept in Dutch zoos. We analyzed these viruses and compared their genome sequences to those of human- and ape-derived AdV sequences in the NCBI GenBank database. Our data demonstrated that the ape-derived viruses clustering to HAdV-C are markedly distinct from the human HAdV-C species in the size and nucleotide composition (%GC) of their genome, differ in the amino-acid sequence of AdV proteins, and have longer RGD-loops in their penton-base proteins. The viruses form three well-separated clades (the human, the gorilla, and the combined group of the bonobo and chimpanzee viruses), and we propose that these should each be given species-level ranks. The Ad-lumc005 AdV isolated from orangutans was found to be very similar to the gorilla AdVs, and bootstrap inference provided evidence of recombination between the orangutan AdV and the gorilla AdVs. This suggests that this virus may not be a genuine orangutan AdV but may have been transferred from a gorilla to an orangutan host.Therapeutic cell differentiatio
    corecore