21 research outputs found

    Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain?

    No full text
    Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells

    The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity

    No full text
    The small heterodimer partner SHP (NR0B2) is an unusual nuclear receptor that lacks the typical DNA binding domain common to most nuclear receptors. SHP has been reported to act as a corepressor for several nuclear receptors, but its exact mechanism of action is still elusive. Here we show that SHP can interact with the liver X receptors LXRalpha (NR1H3) and LXRbeta (NR1H2), as demonstrated by glutathione-S-transferase pull-down assays, mammalian two-hybrid, and coimmunoprecipitation experiments. In transfection assays, SHP inhibits the expression of an artificial reporter driven by an LXR-response element and represses the transcriptional activation by LXR of the human ATP-binding cassette transporter 1 (ABCA1) promoter. Treatment of Caco-2 cells with bile acids, which activate farnesoid X receptor and subsequently induce SHP, leads to the repression of the human ABCG1 gene, an established LXR target gene. These results demonstrate that SHP is able to interact with LXR and to modulate its transcriptional activity

    Recruitment of the Histone Methyltransferase SUV39H1 and Its Role in the Oncogenic Properties of the Leukemia-Associated PML-Retinoic Acid Receptor Fusion Protein

    No full text
    Leukemia-associated fusion proteins establish aberrant transcriptional programs, which result in the block of hematopoietic differentiation, a prominent feature of the leukemic phenotype. The dissection of the mechanisms of deregulated transcription by leukemia fusion proteins is therefore critical for the design of tailored antileukemic strategies, aimed at reestablishing the differentiation program of leukemic cells. The acute promyelocytic leukemia (APL)-associated fusion protein PML-retinoic acid receptor (RAR) behaves as an aberrant transcriptional repressor, due to its ability to induce chromatin modifications (histone deacetylation and DNA methylation) and silencing of PML-RAR target genes. Here, we indicate that the ultimate result of PML-RAR action is to impose a heterochromatin-like structure on its target genes, thereby establishing a permanent transcriptional silencing. This effect is mediated by the previously described association of PML-RAR with chromatin-modifying enzymes (histone deacetylases and DNA methyltransferases) and by recruitment of the histone methyltransferase SUV39H1, responsible for trimethylation of lysine 9 of histone H3

    Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I

    No full text
    The scavenger receptor class B type I (SR-BI), which mediates selective cellular cholesterol uptake from high-density lipoproteins (HDLs), plays a key role in reverse cholesterol transport. The orphan nuclear receptor liver receptor homolog 1 (LRH-1) and SR-BI are co-expressed in liver and ovary, suggesting that LRH-1 might control the expression of SR-BI in these tissues. LRH-1 induces human and mouse SR-BI promoter activity by binding to an LRH-1 response element in the promoter. Retroviral expression of LRH-1 robustly induces SR-BI, an effect associated with histone H3 acetylation on the SR-BI promoter. The decrease in SR-BI mRNA levels in livers of LRH-1(+/−) animals provides in vivo evidence that LRH-1 regulates SR-BI expression. Our data demonstrate that SR-BI is an LRH-1 target gene and underscore the pivotal role of LRH-1 in reverse cholesterol transport

    Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation

    No full text
    LRH-1 is an orphan nuclear receptor predominantly expressed in tissues of endodermal origin, where it controls development and cholesterol homeostasis. We show here that LRH-1 induces cell proliferation through the concomitant induction of cyclin D1 and E1, an effect that is potentiated by its interaction with beta-catenin. Whereas beta-catenin coactivates LRH-1 on the cyclin E1 promoter, LRH-1 acts as a potent tissue-restricted coactivator of beta-catenin on the cyclin D1 promoter. The implication of LRH-1 in cell proliferation highlights an unanticipated crosstalk between LRH-1 and the beta-catenin/Tcf4 signaling pathway, which is relevant for the renewal of intestinal crypt cells

    Biochemical, Structural, and Biological Evaluation of Tranylcypromine Derivatives as Inhibitors of Histone Demethylases LSD1 and LSD2

    No full text
    LSD1 and LSD2 histone demethylases are implicated in a number of physiological and pathological processes, ranging from tumorigenesis to herpes virus infection. A comprehensive structural, biochemical, and cellular study is presented here to probe the potential of these enzymes for epigenetic therapies. This approach employs tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. This drug is a clinically validated antidepressant known to target monoamine oxidases A and B. These two flavoenzymes are structurally related to LSD1 and LSD2. Mechanistic and crystallographic studies of tranylcypromine inhibition reveal a lack of selectivity and differing covalent modifications of the FAD cofactor depending on the enantiomeric form. These findings are pharmacologically relevant, since tranylcypromine is currently administered as a racemic mixture. A large set of tranylcypromine analogues were synthesized and screened for inhibitory activities. We found that the common evolutionary origin of LSD and MAO enzymes, despite their unrelated functions and substrate specificities, is reflected in related ligand-binding properties. A few compounds with partial enzyme selectivity were identified. The biological activity of one of these new inhibitors was evaluated with a cellular model of acute promyelocytic leukemia chosen since its pathogenesis includes aberrant activities of several chromatin modifiers. Marked effects on cell differentiation and an unprecedented synergistic activity with antileukemia drugs were observed. These data demonstrate that these LSD1/2 inhibitors are of potential relevance for the treatment of promyelocytic leukemia and, more generally, as tools to alter chromatin state with promise of a block of tumor progression

    Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells

    No full text
    On the basis of previous research showing the capability of N-carbobenzyloxy-ÄČZ-)amino acidtranylcypromine (-TCPA) derivatives to inhibit LSD1, we inserted at the 4-amino-TCPA moiety first a Z-Pro (9) and a Z-Gly (10) residue and then, after the encouraging data obtained for 9, a pyrrole and an indole ring in which the relative N1 position carried a acetophenone, a N-phenyl/benzylacetamide, or a Z chain (11a–f and 12a–f, respectively). In both series, the Z-pyrrole and indole derivatives 11e, f and 12e, f displayed high LSD1 inhibitory activity. The compounds are able to inhibit LSD1 in NB4 cells, increasing the expression of two related genes, GFI-1b and ITGAM, and to induce cell growth arrest in the AML MB4-11 and APL NB4 cell lines

    Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells

    No full text
    On the basis of previous research showing the capability of N-carbobenzyloxy-ÄČZ-)amino acidtranylcypromine (-TCPA) derivatives to inhibit LSD1, we inserted at the 4-amino-TCPA moiety first a Z-Pro (9) and a Z-Gly (10) residue and then, after the encouraging data obtained for 9, a pyrrole and an indole ring in which the relative N1 position carried a acetophenone, a N-phenyl/benzylacetamide, or a Z chain (11a–f and 12a–f, respectively). In both series, the Z-pyrrole and indole derivatives 11e, f and 12e, f displayed high LSD1 inhibitory activity. The compounds are able to inhibit LSD1 in NB4 cells, increasing the expression of two related genes, GFI-1b and ITGAM, and to induce cell growth arrest in the AML MB4-11 and APL NB4 cell lines
    corecore