3 research outputs found

    Recent Progress on the Stretched Lens Array (SLA)

    Get PDF
    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells

    The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator

    No full text
    A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array

    The Stretched Lens Array (SLA): A Low-Risk, Cost-Effective Array Offering Wing-Level Performance of 180 W/KG and 300 W/M2 at 300 VDC

    No full text
    At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing
    corecore