5 research outputs found

    Distribution of interneurons in the CA2 region of the rat hippocampus.

    Get PDF
    The CA2 region of the mammalian hippocampus is a unique region with its own distinctive properties, inputs and pathologies. Disruption of inhibitory circuits in this region appears to be linked with the pathology of specific psychiatric disorders, promoting interest in its local circuitry, its role in hippocampal function and its dysfunction in disease. In previous studies, CA2 interneurons, including a novel subclass of CA2 dendrite-preferring interneurons that has not been identified in other CA regions, have been shown to display physiological, synaptic and morphological properties unique to this sub-field and may therefore play a crucial role in the hippocampal circuitry. The distributions of immuno-labeled interneurons in dorsal CA2 were studied and compared with those of interneurons in CA1 and CA3. Like those in CA1 and CA3, the somata of CA2 parvalbumin-immunoperoxidase-labeled interneurons were located primarily in Stratum Pyramidale (SP) and Stratum Oriens (SO), with very few cells in Stratum Radiatum (SR) and none in Stratum Lacunosum Moleculare (SLM). There was, however, a greater proportion of GAD-positive cells were immunopositive for PV in SP in CA2 than in CA1 or CA3. CA2 SP also contained a larger density of somatostatin-, calbindin-, and VIP-immunopositive somata than CA1 and/or CA3. Like those in CA1 and CA3, CCK-immunopositive somata in CA2 were mostly located in SR. Reelin- and NPY- immunolabeled cell bodies were located in all layers of the three CA regions. However, a higher density of Reelin-positive somata was found in SP and SR of CA2 than in CA1 or CA3

    A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    Get PDF
    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type

    Rediscovering area CA2: unique properties and functions

    No full text

    The basis of cellular and regional vulnerability in Alzheimer鈥檚 disease

    No full text
    corecore