197 research outputs found

    The Use of Patient Navigators to Improve Cancer Care for Hispanic Patients

    Get PDF
    Background Although the United States is one of the countries at the leading edge of medical breakthroughs and treatments, there are great disparities in the access to care among different socioeconomic strata. One of the most striking discrepancies regarding access to care is found among the ranks of the Hispanic population, which is the fastest growing minority in the United States, but for which cancer is the third leading cause of death. It is clear that better and timely treatment for cancer patients belonging to this minority is needed. Patient navigators can be an important tool to improve access to care of patients belonging to this minority group. Methods Through a systemic search, we identified seven articles that employed patient navigators for Hispanic cancer patients. The identified studies addressed very limited pathology, three studying breast and four colon cancer patients. Conclusions The presence of patient navigation can be an effective to remove impediments that limit the access to care in minority populations and can improve outcomes in Hispanic patients suffering from cancer. Further research to evaluate the cost of patient navigation in relationship to the added benefit early diagnosis, continued follow up and treatment is needed

    Interstitial chemotherapy with biodegradable BCNU (Gliadel®) wafers in the treatment of malignant gliomas

    Get PDF
    Malignant gliomas represent the majority of primary brain tumors, and the prognosis of the patients afflicted with these tumors has been historically dismal, with almost uniform progressive neurologic impairment and rapid death. Even with multimodal treatment using surgery, focal radiation, and chemotherapy, no major strides were made until recently. The development of interstitial BCNU wafers (carmustine wafers, Gliadel®) has led to promising results in the treatment of a selected patients with malignant gliomas, as well as with other intracranial malignancies.BCNU is one of the first systemic chemotherapies which had obtained United States Food and Drug Administration (FDA) approval for the treatment of brain tumors. However, systemic use has been hampered by the modest prolongation of survival and by the prolonged myelosuppression and potentially fatal pulmonary toxicity. The development of interstitial therapies with BCNU represented a great step forward, allowing direct delivery to the tumor bed, with virtually no systemic toxicities. Clinical studies of BCNU wafers have showed good efficacy in both newly diagnosed and recurrent gliomas, as well as a possible therapeutic role in other primary or secondary intracranial malignancies. New studies are currently underway trying to improve the efficacy of the BCNU wafers (Gliadel®) by combining them with different systemic chemotherapies. An overview of the current knowledge ranging from the preclinical developments, to the efficacy and safety seen in the clinical trials and in clinical practice following the drug approval to the future avenues of research is therefore timely

    Immunotherapy of Brain Cancers: The Past, the Present, and Future Directions

    Get PDF
    Treatment of brain cancers, especially high grade gliomas (WHO stage III and IV) is slowly making progress, but not as fast as medical researchers and the patients would like. Immunotherapy offers the opportunity to allow the patient's own immune system a chance to help eliminate the cancer. Immunotherapy's strength is that it efficiently treats relatively small tumors in experimental animal models. For some patients, immunotherapy has worked for them while not showing long-term toxicity. In this paper, we will trace the history of immunotherapy for brain cancers. We will also highlight some of the possible directions that this field may be taking in the immediate future for improving this therapeutic option

    First Results on Survival from a Large Phase 3 Clinical Trial of an Autologous Dendritic Cell Vaccine in Newly Diagnosed Glioblastoma

    Get PDF
    Background: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. Methods: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). Results: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. Conclusions: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival

    Secondary fibrosarcoma of the brain stem treated with cyclophosphamide and Imatinib

    Get PDF
    Radiation-induced midbrain fibrosarcoma is a rare, highly aggressive tumor, which is associated with poor prognosis. We present the case of a 48-year old man with brainstem fibrosarcoma 20 years following radiation therapy received for a pituitary tumor. We discuss this case in the context of the diagnostic criteria for these tumors, and previous reports of secondary and primary sarcomas of the central nervous system

    Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma

    Get PDF
    Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.https://deepblue.lib.umich.edu/bitstream/2027.42/144529/1/12967_2018_Article_1552.pd
    corecore