35 research outputs found

    The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels

    Get PDF
    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol−1), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH0) compared with positive entropy term (−T ΔS0 >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol–sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol–40 sitosterol) started aggregation at higher temperature compared with other ratios

    Edible oleogels in molecular gastronomy

    Get PDF
    AbstractExperimental chefs and researchers have limited options when structuring lipid-based materials present in foods to include: liquids, solids, foams or emulsions. However, the application of gel technology for lipids is on the cusp of advancing into experimental culinary kitchens around the world. The possibility of utilizing edible oils (and even ethanol) to extract a hydrophobic flavor and then gel the material in a similar fashion as hydrocolloids gel water is now a reality. This review covers the three primary oleogels: ethyl cellulose, mixtures of γ-oryzanol and β-sitosterol and candelilla wax

    Elucidation of density profile of self-assembled sitosterol plus oryzanol tubules with small-angle neutron scattering

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Small-angle neutron scattering (SANS) experiments have been performed on self-assembled tubules of sitosterol and oryzanol in triglyceride oils to investigate details of their structure. Alternative organic phases (deuterated and non-deuterated decane, limonene, castor oil and eugenol) were used to both vary the contrast with respect to the tubules and investigate the influence of solvent chemistry. The tubules were found to be composed of an inner and an outer shell containing the androsterol group of sitosterol or oryzanol and the ferulic acid moieties in the oryzanol molecule, respectively. While the inner shell has previously been detected in SAXS experiments, the outer shell was not discernible due to similar scattering length density with respect to the surrounding solvent for X-rays. By performing contrast variation SANS experiments, both for the solvent and structurant, a far more detailed description of the self-assembled system is obtainable. A model is introduced to fit the SANS data; we find that the dimensions of the inner shell agree quantitatively with the analysis performed in earlier SAXS data (radius of 39.4 ± 5.6 Å for core and inner shell together, wall thickness of 15.1 ± 5.5 Å). However, the newly revealed outer shell was found to be thinner than the inner shell (wall thickness 8.0 ± 6.5 Å). The changes in the scattering patterns may be explained in terms of the contrast between the structurant and the organic phase and does not require any subtle indirect effects caused by the presence of water, other than water promoting the formation of sitosterol monohydrate in emulsions with aqueous phases with high water activity

    Phase-Separating Binary Polymer Mixtures : The Degeneracy of the Virial Coefficients and Their Extraction from Phase Diagrams

    No full text
    The Edmond-Ogston model for phase separation in binary polymer mixtures is based on a truncated virial expansion of the Helmholtz free energy up to the second-order terms in the concentration of the polymers. The second virial coefficients (B11, B12, B22) are the three parameters of the model. Analytical solutions are presented for the critical point and the spinodal in terms of molar concentrations. The calculation of the binodal is simplified by splitting the problem into a part that can be solved analytically and a (two-dimensional) problem that generally needs to be solved numerically, except in some specific cases. The slope of the tie-lines is identified as a suitable parameter that can be varied between two well-defined limits (close to and far away from the critical point) to perform the numerical part of the calculation systematically. Surprisingly, the analysis reveals a degenerate behavior within the model in the sense that a critical point or tie-line corresponds to an infinite set of triplets of second virial coefficients (B11, B12, B22). Since the Edmond-Ogston model is equivalent to the Flory-Huggins model up to the second order of the expansion in the concentrations, this degeneracy is also present in the Flory-Huggins model. However, as long as the virial coefficients predict the correct critical point, the shape of the binodal is relatively insensitive to the specific choice of the virial coefficients, except in a narrow range of values for the cross-virial coefficient B12. </p
    corecore