24 research outputs found

    Molecular analysis of Albicidin resistance in Xanthomonas albilineans

    No full text

    Functional and Biochemical Analysis of the Chlamydia trachomatis Ligase MurE â–ż

    No full text
    Chlamydiae are unusual obligately intracellular bacteria that do not synthesize detectable peptidoglycan. However, they possess genes that appear to encode products with peptidoglycan biosynthetic activity. Bioinformatic analysis predicts that chlamydial MurE possesses UDP-MurNAc-l-Ala-d-Glu:meso-diaminopimelic acid (UDP-MurNAc-l-Ala-d-Glu:meso-A2pm) ligase activity. Nevertheless, there are no experimental data to confirm this hypothesis. In this paper we demonstrate that the murE gene from Chlamydia trachomatis is capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-l-Ala-d-Glu:meso-A2pm ligase activity. Recombinant MurE from C. trachomatis (MurECt) was overproduced in and purified from E. coli in order to investigate its kinetic parameters in vitro. By use of UDP-MurNAc-l-Ala-d-Glu as the nucleotide substrate, MurECt demonstrated ATP-dependent meso-A2pm ligase activity with pH and magnesium ion optima of 8.6 and 30 mM, respectively. Other amino acids (meso-lanthionine, the ll and dd isomers of A2pm, d-lysine) were also recognized by MurECt. However, the activities for these amino acid substrates were weaker than that for meso-A2pm. The specificity of MurECt for three possible C. trachomatis peptidoglycan nucleotide substrates was also determined in order to deduce which amino acid might be present at the first position of the UDP-MurNAc-pentapeptide. Relative kcat/Km ratios for UDP-MurNAc-l-Ala-d-Glu, UDP-MurNAc-l-Ser-d-Glu, and UDP-MurNAc-Gly-d-Glu were 100, 115, and 27, respectively. Our results are consistent with the synthesis in chlamydiae of a UDP-MurNAc-pentapeptide in which the third amino acid is meso-A2pm. However, due to the lack of specificity of MurECt for nucleotide substrates in vitro, it is not obvious which amino acid is present at the first position of the pentapeptide

    Functional and Biochemical Analysis of Chlamydia trachomatis MurC, an Enzyme Displaying UDP-N-Acetylmuramate:Amino Acid Ligase Activity

    No full text
    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):l-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:l-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (l-alanine, l-serine, and glycine); comparable V(max)/K(m) values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide

    A de novo designed inhibitor of D-Ala-D-Ala ligase from E. coli

    No full text
    Blueprints for an inhibitor: The de novo molecular design program SPROUT was used in conjunction with the X-ray crystal structures of the bacterial enzymes DdlB and VanA to produce a novel enzyme-selective inhibitor template. Following short and efficient synthesis and in keeping with the design predictions, the resulting inhibitor showed useful levels of enzyme-selective inhibition

    The nature of Staphylococcus aureus MurA and MurZ and approaches for detection of peptidoglycan biosynthesis inhibitors.

    No full text
    Staphylococcus aureus and a number of other Gram-positive organisms harbour two genes (murA and murZ) encoding UDP-N-acetylglucosamine enolpyruvyl transferase activity for catalysing the first committed step of peptidoglycan biosynthesis. We independently inactivated murA and murZ in S. aureus and established that either can sustain viability. Purification and characterization of the MurA and MurZ enzymes indicated that they are biochemically similar in vitro, consistent with similar overall structures predicted for the isozymes by molecular modelling. Nevertheless, MurA appears to be the primary enzyme utilized in the staphylococcal cell. Accordingly, murA expression was approximately five times greater than murZ expression during exponential growth, and the peptidoglycan content of S. aureus was reduced by approximately 25% following inactivation of murA, but remained almost unchanged following inactivation of murZ. Despite low level expression during normal growth, murZ expression was strongly induced (up to sixfold) following exposure to inhibitors of peptidoglycan biosynthesis, which was not observed for murA. Strains generated in this study were validated as potential tools for identifying novel anti-staphylococcal agents targeting peptidoglycan biosynthesis using known inhibitors of the pathway

    6-Arylpyrido[2,3-<em>d</em>]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine:D-Alanine Ligase

    Get PDF
    <div><h3>Background</h3><p>ATP-dependent D-alanine:D-alanine ligase (Ddl) is a part of biochemical machinery involved in peptidoglycan biosynthesis, as it catalyzes the formation of the terminal D-ala-D-ala dipeptide of the peptidoglycan precursor UDPMur<em>N</em>Ac-pentapeptide. Inhibition of Ddl prevents bacterial growth, which makes this enzyme an attractive and viable target in the urgent search of novel effective antimicrobial drugs. To address the problem of a relentless increase in resistance to known antimicrobial agents we focused our attention to discovery of novel ATP-competitive inhibitors of Ddl.</p> <h3>Methodology/Principal Findings</h3><p>Encouraged by recent successful attempts to find selective ATP-competitive inhibitors of bacterial enzymes we designed, synthesized and evaluated a library of 6-arylpyrido[2,3-<em>d</em>]pyrimidine-based compounds as inhibitors of <em>Escherichia coli</em> DdlB. Inhibitor binding to the target enzyme was subsequently confirmed by surface plasmon resonance and studied with isothermal titration calorimetry. Since kinetic analysis indicated that 6-arylpyrido[2,3-<em>d</em>]pyrimidines compete with the enzyme substrate ATP, inhibitor binding to the ATP-binding site was additionally studied with docking. Some of these inhibitors were found to possess antibacterial activity against membrane-compromised and efflux pump-deficient strains of <em>E. coli.</em></p> <h3>Conclusions/Significance</h3><p>We discovered new ATP-competitive inhibitors of DdlB, which may serve as a starting point for development of more potent inhibitors of DdlB that could include both, an ATP-competitive and D-Ala competitive moiety.</p> </div
    corecore