615 research outputs found

    Taking downtown to the next level: an assessment of the downtown Chattanooga plan for sustainable development

    Get PDF
    Today, many cities are looking to change the paradigm of development that is centered on economic progress at the expense of the environment. Land-use management schemes are inefficient. Central business districts have become abandoned and damaged areas. Revitalization has been the key to making positive changes. Chattanooga, Tennessee is one of the cities that has revitalized its central business district to bring new life, new development, and a place where people can coexist with the natural environment. The objective of this study is to assess sustainable development during the revitalization of the Chattanooga, Tennessee central business district. The revitalization of the Chattanooga central business district has been an ongoing process. Several aspects of sustainable development have been incorporated into the downtown development plan in order to maintain environmental integrity along with economic growth. The study methodology involves a three step approach: 1) review of Agenda-21, which is the blueprint for sustainable development that was established at the 1992 Earth Summit in Rio de Janeiro, 2) identification of some key principles to use as a baseline to measure Chattanooga\u27s progress toward sustainable development, and 3) evaluation of Chattano_oga\u27s revitalization of its Central Business District Agenda-21 in achieving the baseline measures of sustainability. The methods that will be used will involve creating a working definition for sustainability to guide land-use management goals in developing the central business district. Sustainability and sustainable development are synonymous when discussing rebuilding or changing the central business district; thus it will be an integral part of this study to define these two concepts. Measuring sustainable development will be done by examining data from literature reviews and information from the city planning and design office. This study finds that the central business district of Chattanooga has maintained a sense of environmental awareness during its revitalization process by focusing on recycling, reuse, and the redevelopment of land in the central business district of Chattanooga. Although the study finds the City has made substantial progress toward sustainability, it includes several recommendations to assist the city in its goals to promote economic and environmental harmony. A key recommendation is that the city fully embrace the concept that environmental harmony revolves around the principle of development being cyclical. During development there is recycling, rebirth, and re-development in the same manner as the natural lifecycle in the environment cycles. The highly successful re-development of properties in Chattanooga\u27s central business district, such as the Coolidge Park, BellSouth Park Baseball Stadium, and the new Electric Power Board Facility, illustrate the importance of the principle

    Value of Private Lands Managed for Wild Northern Bobwhites in the Deep South

    Get PDF
    Successful northern bobwhite (Colinus virginiaus) management creating huntable bobwhite populations in the southeastern United States is largely practiced on private lands. These properties not only support high density bobwhite populations, they also support biodiversity including many declining or endangered species associated with frequently-burned pine savannas. The private land model has proven sustainable over centuries and has recently increased with \u3e20,000 ha of wild bobwhite lands added in Georgia, Florida, and South Carolina since 2000. The NBCI recognizes private lands are critical to restoration of bobwhites but, despite their conservation value, no studies have quantified areas under wild bobwhite management. We mapped 259 properties totaling ~ 345,614 ha with wild bobwhite management principally in Georgia, Florida, Alabama, and South Carolina, and are completing mapping in Mississippi, Virginia, and North Carolina. Our survey data found management actions were consistent across these properties including maintaining open pine canopy, reducing hardwoods in upland areas, prescribed fire on areas of appropriate sizes and distribution, year- round supplemental feeding, nest predator management, and conservative harvest rates. Adoption of these management practices are a result of long-term research demonstrating their efficacy. Density of bobwhites on a property was related to landscape composition with lower densities on more fragmented sites. Properties in core areas surrounded by other managed properties often achieved bobwhite densities of 5–8 quail/ha. Bobwhite densities on smaller isolated properties densities were ~ 2.5 quail/ha during fall. Aspects of this successful management model may be useful to other private lands as well as public management areas focused on northern bobwhite

    Dehydration and ionic conductance quantization in nanopores

    Full text link
    There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct functional nanoscale devices. Specifically, we focus on the newly predicted phenomenon of quantized ionic conductance in nanopores as a function of the effective pore radius - a prediction that yields a particularly transparent way to probe the contribution of dehydration to ionic transport. We study the role of ionic species in the formation of hydration layers inside and outside of pores. We find that the ion type plays only a minor role in the radial positions of the predicted steps in the ion conductance. However, ions with higher valency form stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting noise, with synthetic nanopores would provide evidence of the deviation from macroscopic (continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light on the behavior of ions in more complex biological channels.Comment: 13 pages, 10 figure

    Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Get PDF
    (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine.In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA.1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect

    Integrating stochastic models and in situ sampling for monitoring soil carbon sequestration

    Get PDF
    Participation in carbon (C) markets could provide farmers in developing countries incentives for improving soil fertility. However carbon traders need assurances that contract levels of C are being achieved. Thus, methods are needed to monitor and verify soil C changes over time and space to determine whether target levels of C storage are being met. Because direct measurement over the large areas needed to sequester contract amounts of C in soil is not practical, other approaches are necessary. An integrated approach is described in which an Ensemble Kalman Filter (EnKF) is used to assimilate in situ soil carbon measurements into a stochastic soil C model to estimate soil C changes over time and space. The approach takes into account errors in in situ measurements and uncertainties in the model to estimate mean and variance of soil C for each land unit within a larger land area. The approach requires initial estimates of soil C over space along with uncertainties in these estimates. Model predictions are made to estimate soil C for the next year, in situ soil C measurements update these predictions using maximum likelihood methods, and the spatial pattern of soil C mean, variance, and covariance thus evolve over time. This approach can also be used to provide yearly estimates of the changes in soil C over multiple fields, the variance in those estimates, and aggregate soil carbon mean and variance values each year. In this paper, the use of the EnKF is shown for an area in Ghana with 12 fields, comparing numbers of fields sampled each year and ways of selecting which fields to sample each year. The model predicts soil C changes over time using first order decomposition of existing soil C and addition of C from plant residues. The lowest intensity sampling method (sampling only 1/4 of the fields per year) resulted in the highest level of uncertainty in aggregate soil C estimate. Rotating sample fields each year improved the performance of the EnKF. These results demonstrated a quantifiable tradeoff between field sampling intensity and uncertainty in aggregate soil C estimates. The framework could be modified to use more complex biophysical models and to assimilate remote sensing dat

    Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh

    Get PDF
    Sandy aquifers deposited >12,000 years ago, some as shallow as 30 m, have provided a reliable supply of low-arsenic (As) drinking water in rural Bangladesh. This study concerns the potential risk of contaminating these aquifers in areas surrounding the city of Dhaka where hydraulic heads in aquifers >150 m deep have dropped by 70 m in a few decades due to municipal pumping. Water levels measured continuously from 2012 to 2014 in 12 deep (>150 m), 3 intermediate (90-150 m) and 6 shallow (<90 m) community wells, 1 shallow private well, and 1 river piezometer show that the resulting drawdown cone extends 15-35 km east of Dhaka. Water levels in 4 low-As community wells within the 62-147 m depth range closest to Dhaka were inaccessible by suction for up to a third of the year. Lateral hydraulic gradients in the deep aquifer system ranged from 1.7 × 10-4 to 3.7 × 10-4 indicating flow towards Dhaka throughout 2012-2014. Vertical recharge on the edge of the drawdown cone was estimated at 0.21 ± 0.06 m/yr. The data suggest that continued municipal pumping in Dhaka could eventually contaminate some relatively shallow community wells

    A simple soil organic-matter model for biomass data assimilation in community-level carbon contracts

    Get PDF
    Soil carbon (C) sequestration has been proposed as a transitional win-win strategy to help replenish organic-matter content in depleted agricultural soils and counter increases in atmospheric greenhouse gases. Data assimilation and remote sensing can reduce uncertainty in sequestered C mass estimates, but simple soil organic carbon (SOC) models are required to make operational predictions of tradeable amounts over large, heterogenous areas. Our study compared the performance of RothC26.3 and a reduced compartmental model on an 11-year fertilizer trial in subhumid West Africa. Root mean square error (RMSE) differences of 0.05 Mg C/ha between models on total SOC predictions suggest that for contractual purposes, SOC dynamics can be simulated by a two-pool structure with labile and stable components. Faster (seasonal) and slower (semicentennial and beyond) rates can be approximated by constants as instantaneous and infinite decay. In these systems, simulations indicate that cereal residue incorporation holds most potential for mitigation of transient C loss associated with recent land conversion to agriculture

    Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart

    Get PDF
    Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers

    Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach

    Get PDF
    In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum–fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with observed soil organic matter (SOM) data similar to the study presented here, there are many opportunities for the application of the CSM for carbon sequestration and resource management in Sub-Saharan Africa
    corecore