105 research outputs found
Operator product expansions as a consequence of phase space properties
The paper presents a model-independent, nonperturbative proof of operator
product expansions in quantum field theory. As an input, a recently proposed
phase space condition is used that allows a precise description of point field
structures. Based on the product expansions, we also define and analyze normal
products (in the sense of Zimmermann).Comment: v3: minor wording changes, as to appear in J. Math. Phys.; 12 page
An operator expansion for integrable quantum field theories
A large class of quantum field theories on 1+1 dimensional Minkowski space,
namely, certain integrable models, has recently been constructed rigorously by
Lechner. However, the construction is very abstract and the concrete form of
local observables in these models remains largely unknown. Aiming for more
insight into their structure, we establish a series expansion for observables,
similar but not identical to the well-known form factor expansion. This
expansion will be the basis for a characterization and explicit construction of
local observables, to be discussed elsewhere. Here, we establish the expansion
independent of the localization aspect, and analyze its behavior under
space-time symmetries. We also clarify relations with deformation methods in
quantum field theory, specifically, with the warped convolution in the sense of
Buchholz and Summers.Comment: minor corrections and clarifications, as published in J. Phys A; 24
page
On the status of pointlike fields in integrable QFTs
In integrable models of quantum field theory, local fields are normally constructed by means of the bootstrap-formfactor program. However, the convergence of their n-point functions is unclear in this setting. An alternative approach uses fully convergent expressions for fields with weaker localization properties in spacelike wedges, and deduces existence of observables in bounded regions from there, but yields little information about their explicit form. We propose a new, hybrid construction: We aim to describe pointlike local quantum fields; but rather than exhibiting their n-point functions and verifying the Wightman axioms, we establish them as closed operators affiliated with a net of local von Neumann algebras that is known from the wedge-local approach. This is shown to work at least in the Ising model
Energy inequalities in interacting quantum field theories
The classical energy conditions, originally motivated by the Penrose-Hawking
singularity theorems of general relativity, are violated by quantum fields. A
reminiscent notion of such conditions are the so called quantum energy
inequalities (QEIs), which are however not known to hold generally in quantum
field theory. Here we present first steps towards investigating QEIs in quantum
field theories with self-interaction.Comment: to appear in the proceedings of the conference "Progress and Visions
in Quantum Theory in View of Gravity - Bridging Foundations of Physics and
Mathematics", Leipzig 2018; 8 page
A sharpened nuclearity condition for massless fields
A recently proposed phase space condition which comprises information about
the vacuum structure and timelike asymptotic behavior of physical states is
verified in massless free field theory. There follow interesting conclusions
about the momentum transfer of local operators in this model.Comment: 13 pages, LaTeX. As appeared in Letters in Mathematical Physic
Scaling algebras and pointlike fields: A nonperturbative approach to renormalization
We present a method of short-distance analysis in quantum field theory that
does not require choosing a renormalization prescription a priori. We set out
from a local net of algebras with associated pointlike quantum fields. The net
has a naturally defined scaling limit in the sense of Buchholz and Verch; we
investigate the effect of this limit on the pointlike fields. Both for the
fields and their operator product expansions, a well-defined limit procedure
can be established. This can always be interpreted in the usual sense of
multiplicative renormalization, where the renormalization factors are
determined by our analysis. We also consider the limits of symmetry actions. In
particular, for suitable limit states, the group of scaling transformations
induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math.
Phys.; 37 page
Quantum backflow and scattering
Backflow is the phenomenon that the probability current of a quantum particle on the line can flow in the direction opposite to its momentum. In this article, previous investigations of backflow, pertaining to interaction-free dynamics or purely kinematical aspects, are extended to scattering situations in short-range potentials. It is shown that backflow is a universal quantum effect which exists in any such potential, and is always of bounded spatial extent in a specific sense. The effects of reflection and transmission processes on backflow are investigated, both analytically for general potentials, and numerically in various concrete examples
Scaling limits of integrable quantum field theories
Short distance scaling limits of a class of integrable models on
two-dimensional Minkowski space are considered in the algebraic framework of
quantum field theory. Making use of the wedge-local quantum fields generating
these models, it is shown that massless scaling limit theories exist, and
decompose into (twisted) tensor products of chiral, translation-dilation
covariant field theories. On the subspace which is generated from the vacuum by
the observables localized in finite light ray intervals, this symmetry can be
extended to the M\"obius group. The structure of the interval-localized
algebras in the chiral models is discussed in two explicit examples.Comment: Revised version: erased typos, improved formulations, and corrections
of Lemma 4.8/Prop. 4.9. As published in RMP. 43 pages, 1 figur
Coincidence Arrangements of Local Observables and Uniqueness of the Vacuum in QFT
A new phase space criterion, encoding the physically motivated behavior of
coincidence arrangements of local observables, is proposed in this work. This
condition entails, in particular, uniqueness and purity of the energetically
accessible vacuum states. It is shown that the qualitative part of this new
criterion is equivalent to a compactness condition proposed in the literature.
Its novel quantitative part is verified in massive free field theory.Comment: 27 pages, LaTe
On dilation symmetries arising from scaling limits
Quantum field theories, at short scales, can be approximated by a scaling
limit theory. In this approximation, an additional symmetry is gained, namely
dilation covariance. To understand the structure of this dilation symmetry, we
investigate it in a nonperturbative, model independent context. To that end, it
turns out to be necessary to consider non-pure vacuum states in the limit.
These can be decomposed into an integral of pure states; we investigate how the
symmetries and observables of the theory behave under this decomposition. In
particular, we consider several natural conditions of increasing strength that
yield restrictions on the decomposed dilation symmetry.Comment: 40 pages, 1 figur
- …