55 research outputs found

    Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2.

    Get PDF
    Immunization with vesicular stomatitis virus (VSV)-vectored COVID-19 vaccine candidates expressing the SARS-CoV-2 spike protein in place of the VSV glycoprotein relies implicitly on expression of the ACE2 receptor at the muscular injection site. Here, we report that such a viral vector vaccine did not induce protective immunity following intramuscular immunization of K18-hACE2 transgenic mice. However, when the viral vector was trans-complemented with the VSV glycoprotein, intramuscular immunization resulted in high titers of spike-specific neutralizing antibodies. The vaccinated animals were fully protected following infection with a lethal dose of SARS-CoV-2-SD614G via the nasal route, and partially protected if challenged with the SARS-CoV-2Delta variant. While dissemination of the challenge virus to the brain was completely inhibited, replication in the lung with consequent lung pathology was not entirely controlled. Thus, intramuscular immunization was clearly enhanced by trans-complementation of the VSV-vectored vaccines by the VSV glycoprotein and led to protection from COVID-19, although not achieving sterilizing immunity

    Potent neutralization by monoclonal human IgM against SARS-CoV-2 is impaired by class switch.

    Get PDF
    To investigate the class-dependent properties of anti-viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike-protein-specific B cells from donors recently infected with SARS-CoV-2, allowing production of recombinant antibodies. We isolate 20, spike-protein-specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen-independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency

    Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland.

    No full text
    A total of 44 samples of salmon, pangasius (shark catfish), shrimps, and oysters were tested for the presence of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus, which are indicator organisms commonly used in programs to monitor antibiotic resistance. The isolated bacterial strains, confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, were tested against a panel of 29 antimicrobial agents to obtain MICs. Across the four sample types, Enterococcus faecalis (59%) was most common, followed by E. coli (55%), P. aeruginosa (27%), and S. aureus (9%). All bacterial species were resistant to some antibiotics. The highest rates of resistance were in E. faecalis to tetracycline (16%), in E. coli to ciprofloxacin (22%), and in S. aureus to penicillin (56%). Antibiotic resistance was found among all sample types, but salmon and oysters were less burdened than were shrimps and pangasius. Multidrug-resistant (MDR) strains were exclusively found in shrimps and pangasius: 17% of pangasius samples (MDR E. coli and S. aureus) and 64% of shrimps (MDR E. coli, E. faecalis, and S. aureus). Two of these MDR E. coli isolates from shrimps (one from an organic sample) were resistant to seven antimicrobial agents. Based on these findings, E. coli in pangasius, shrimps, and oysters, E. faecalis in pangasius, shrimps, and salmon, and P. aeruginosa in pangasius and shrimps are potential candidates for programs monitoring antimicrobial resistance. Enrichment methods for the detection of MDR bacteria of special public health concern, such as methicillin-resistant S. aureus and E. coli producing extended-spectrum β-lactamases and carbapenemases, should be implemented

    and Reversal by Homocysteine

    No full text
    Abstract. Purine nucleosides, which accumulate in adenosine deaminase and purine nucleoside phosphorylase deficiency, are toxic to lymphoid cells. Since adenine nucleosides inhibit S-adenosylhomocysteine hydrolase, they could potentially decrease intracellular methionine synthesis. To test this hypothesis, we measured methionine synthesis by the use of ['4C]formate as a radioactive precursor in cultured human T and B lymphoblasts treated with varying concentrations of purine nucleosides; 2'-deoxycoformycin and 8-aminoguanosine were added to inhibit adenosine deaminase and purine nucleoside phosphorylase, respectively. In the T lymphoblasts methionine synthesis was inhibited-50 % by 10 MAM of 2'-deoxyadenosine, adenine arabinoside, or 2'-deoxyguanosine. By contrast, in the B lymphoblasts methionine synthesis was considerably less affected by these nucleosides, with 50 % inhibition occurring at 100,uM of 2'-deoxyadenosine and adenine arabinoside; 100 uM of2'-deoxyguanosine yielded <10% inhibition. Adenosine and guanosine were considerably less potent inhibitors of methionine synthesis in both the T and B lymphoblasts. An adenosine deaminasedeficient and a purine nucleoside phosphorylase-deficient cell line, both of B cell origin, exhibited sensitivities to the nucleosides similar to those of the normal B cell lines. In both the T and B cell lines homocysteine reversed the methionine synthesis inhibition induced by the adenine nucleosides and guanosine and largely reversed that induced by 2'-deoxyguanosine. Methionin

    Reactions of Nitric Oxide with Vitamin B 12

    No full text
    corecore