25 research outputs found

    Cost-effectiveness of healthy eating and/or physical activity promotion in pregnant women at increased risk of gestational diabetes mellitus

    Get PDF
    __Background:__ Gestational diabetes mellitus (GDM) is associated with perinatal health risks to both mother and offspring, and represents a large economic burden. The DALI study is a multicenter randomized controlled trial, undertaken to add to the knowledge base on the effectiveness of interventions for pregnant women at increased risk for GDM. The purpose of this study was to evaluate the cost-effectiveness of the healthy eating and/or physical activity promotion intervention compared to usual care among pregnant women at increased risk of GDM from a societal perspective. __Methods:__ An economic evaluation was performed alongside a European multicenter-randomized controlled trial. A total of 435 pregnant women at increased risk of GDM in primary and secondary care settings in nine European countries, were recruited and randomly allocated to a healthy eating and physical activity promotion intervention (HE + PA intervention), a healthy eating promotion intervention (HE intervention), or a physical activity promotion intervention (PA intervention). Main outcome measures were gestational weight gain, fasting glucose, insulin resistance (HOMA-IR), quality adjusted life years (QALYs), and societal costs. __Results:__ Between-group total cost and effect differences were not significant, besides significantly less gestational weight gain in the HE + PA group compared with the usual care group at 35-37 weeks ( 2.3;95%CI:-3.7;-0.9). Cost-effectiveness acceptability curves indicated that the HE + PA intervention was the preferred intervention strategy. At 35-37 weeks, it depends on the decision-makers' willingness to pay per kilogram reduction in gestational weight gain whether the HE + PA intervention is cost-effective for gestational weight gain, whereas it was not cost-effective for fasting glucose and HOMA-IR. After delivery, the HE + PA intervention was cost-effective for QALYs, which was predominantly caused by

    Cholinergic Modulation of Type 2 Immune Responses

    Get PDF
    In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.status: publishe

    Cholinergic Modulation of Type 2 Immune Responses

    No full text
    In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases

    Vagus Nerve Stimulation dampens intestinal inflammation in a murine model of experimental Food Allergy.

    No full text
    Background: The vagus nerve has emerged as an important modulator of the intesti‐nal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy.Methods: Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis.Results: When compared to control mice, VGX did not significantly affect the devel‐opment and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages.Conclusions: These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic ap‐proaches in the treatment of not only food allergy but also other immune‐mediated diseases.status: publishe

    Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor

    No full text
    Vagotomy (VGX) increases the susceptibility to develop colitis suggesting a crucial role for the cholinergic anti-inflammatory pathway in the regulation of the immune responses. Since oral tolerance and the generation of regulatory T cells (Tregs) are crucial to preserve mucosal immune homeostasis, we studied the effect of vagotomy and the involvement of α7 nicotinic receptors (α7nAChR) at the steady state and during colitis. Therefore, the development of both oral tolerance and colitis (induced by dextran sulfate sodium (DSS) or via T cell transfer) was studied in vagotomized mice and in α7nAChR(-/-) mice. VGX, but not α7nAChR deficiency, prevented oral tolerance establishment. This effect was associated with reduced Treg conversion in the lamina propria and mesenteric lymphnodes. To the same extent, vagotomized mice, but not α7nAChR(-/-) mice, developed a more severe DSS colitis compared with control mice treated with DSS, associated with a decreased number of colonic Tregs. However, neither VGX nor absence of α7nAChR in recipient mice affected colitis development in the T cell transfer model. In line, deficiency of α7nAChR exclusively in T cells did not influence the development of colitis induced by T cell transfer. Our results indicate a key role for the vagal intestinal innervation in the development of oral tolerance and colitis, most likely by modulating induction of Tregs independently of α7nAChR.status: publishe

    Ghrelin receptor modulates T helper cells during intestinal inflammation

    No full text
    The orexigenic peptide ghrelin has anti-inflammatory properties in colitis, however, the mechanism of action and the immune cells targeted remain still to be elucidated. Here, we assessed the possible effect of ghrelin on T helper (Th) cells in a T cell transfer model of chronic colitis.status: publishe

    Vagotomy Affects the Development of Oral Tolerance and Increases Susceptibility to Develop Colitis Independently of α-7 Nicotinic Receptor

    No full text
    Abstract Vagotomy (VGX) increases the susceptibility to develop colitis suggesting a crucial role for the cholinergic anti-inflammatory pathway in the regulation of the immune responses. Since oral tolerance and the generation of regulatory T cells (Tregs) are crucial to preserve mucosal immune homeostasis, we studied the effect of vagotomy and the involvement of α7 nicotinic receptors (α7nAChR) at the steady state and during colitis. Therefore, the development of both oral tolerance and colitis (induced by dextran sulfate sodium (DSS) or via T cell transfer) was studied in vagotomized mice and in α7nAChR−/− mice. VGX, but not α7nAChR deficiency, prevented oral tolerance establishment. This effect was associated with reduced Treg conversion in the lamina propria and mesenteric lymphnodes. To the same extent, vagotomized mice, but not α7nAChR−/− mice, developed a more severe DSS colitis compared with control mice treated with DSS, associated with a decreased number of colonic Tregs. However, neither VGX nor absence of α7nAChR in recipient mice affected colitis development in the T cell transfer model. In line, deficiency of α7nAChR exclusively in T cells did not influence the development of colitis induced by T cell transfer. Our results indicate a key role for the vagal intestinal innervation in the development of oral tolerance and colitis, most likely by modulating induction of Tregs independently of α7nAChR

    Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus

    No full text
    Electrical stimulation of the cervical vagus nerve (VNS) prevents postoperative ileus (POI) in mice. As this approach requires an additional cervical procedure, we explored the possibility of peroperative abdominal VNS in mice and human.status: publishe
    corecore