2,758 research outputs found
Radiation comb generation with extended Josephson junctions
We propose the implementation of a Josephson radiation comb generator (JRCG)
based on an extended Josephson junction subject to a time dependent magnetic
field. The junction critical current shows known diffraction patterns and
determines the position of the critical nodes when it vanishes. When the
magnetic flux passes through one of such critical nodes, the superconducting
phase must undergo a -jump to minimize the Josephson energy.
Correspondingly a voltage pulse is generated at the extremes of the junction.
Under periodic driving this allows us to produce a comb-like voltage pulses
sequence. In the frequency domain it is possible to generate up to hundreds of
harmonics of the fundamental driving frequency, thus mimicking the frequency
comb used in optics and metrology. We discuss several implementations through a
rectangular, cylindrical and annular junction geometries, allowing us to
generate different radiation spectra and to produce an output power up to
~pW at ~GHz for a driving frequency of ~MHz.Comment: 4+ pages, 4 color figure
Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors
We investigate the photon-mediated heat flow between two Josephson-coupled
Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in
standard low temperature experiments involving temperature-biased
superconducting quantum interference devices (SQUIDs), this radiative
contribution is negligible if compared to the direct galvanic one, but it
largely exceeds the heat exchanged between electrons and the lattice phonons.
The corresponding thermal conductance is found to be several orders of
magnitude smaller, for real experiments setup parameters, than the universal
quantum of thermal conductance, kappa_0(T)=pi k_B^2T/6hbar.Comment: 8 pages, 6 figure
Opening of Ancillary Service Markets to Distributed Energy Resources: A Review
Electric power systems are moving toward more decentralized models, where energy generation is performed by small and distributed power plants, often from renewables. With the gradual phase out from fossil fuels, however, Distribution Energy Resources (DERs) are expected to take over in the provision of all regulation services required to operate the grid. To this purpose, the opening of national Ancillary Service Markets (ASMs) to DERs is considered an essential passage. In order to allow this transition to happen, current opportunities and barriers to market participation of DERs must be clearly identified. In this work, a comprehensive review is provided of the state-of-the-art of research on DER integration into ASMs. The topic at hand is analyzed from different perspectives. First, the current situation and main trends regarding the reformation processes of national ASMs are analyzed to get a clear picture of the evolutions expected and adjustment required in the future, according to the scientific community. Then, the focus is moved to the strategies to be adopted by aggregators for the effective control and coordination of DERs, exploring the challenges posed by the uncertainties affecting the problem. Coordination schemes between transmission and distribution system operators, and the implications on the grid infrastructure operation and planning, are also investigated. Finally, the review deepens the control capabilities required for DER technologies to perform the needed control actions
Nanoscale phase-engineering of thermal transport with a Josephson heat modulator
Macroscopic quantum phase coherence has one of its pivotal expressions in the
Josephson effect [1], which manifests itself both in charge [2] and energy
transport [3-5]. The ability to master the amount of heat transferred through
two tunnel-coupled superconductors by tuning their phase difference is the core
of coherent caloritronics [4-6], and is expected to be a key tool in a number
of nanoscience fields, including solid state cooling [7], thermal isolation [8,
9], radiation detection [7], quantum information [10, 11] and thermal logic
[12]. Here we show the realization of the first balanced Josephson heat
modulator [13] designed to offer full control at the nanoscale over the
phase-coherent component of thermal currents. Our device provides
magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a
maximum of the flux-to-temperature transfer coefficient reaching 200 mK per
flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the
exact correspondence in the phase-engineering of charge and heat currents,
breaking ground for advanced caloritronic nanodevices such as thermal splitters
[14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
Measurement of the Charge Collection Efficiency after Heavy Non-Uniform Irradiation in BaBar Silicon Detectors
We have investigated the depletion voltage changes, the leakage current
increase and the charge collection efficiency of a silicon microstrip detector
identical to those used in the inner layers of the BaBar Silicon Vertex Tracker
(SVT) after heavy non-uniform irradiation. A full SVT module with the front-end
electronics connected has been irradiated with a 0.9 GeV electron beam up to a
peak fluence of 3.5 x 10^14 e^-/cm^2, well beyond the level causing substrate
type inversion. We irradiated one of the two sensors composing the module with
a non-uniform profile with sigma=1.4 mm that simulates the conditions
encountered in the BaBar experiment by the modules intersecting the horizontal
machine plane. The position dependence of the charge collection properties and
the depletion voltage have been investigated in detail using a 1060 nm LED and
an innovative measuring technique based only on the digital output of the chip.Comment: 7 pages, 13 figures. Presented at the 2004 IEEE Nuclear Science
Symposium, October 18-21, Rome, Italy. Accepted for publication by IEEE
Transactions on Nuclear Scienc
- âŠ