16 research outputs found

    The Rural Household Multiple Indicator Survey, data from 13,310 farm households in 21 countries

    Get PDF
    The Rural Household Multiple Indicator Survey (RHoMIS) is a standardized farm household survey approach which collects information on 758 variables covering household demographics, farm area, crops grown and their production, livestock holdings and their production, agricultural product use and variables underlying standard socio-economic and food security indicators such as the Probability of Poverty Index, the Household Food Insecurity Access Scale, and household dietary diversity. These variables are used to quantify more than 40 different indicators on farm and household characteristics, welfare, productivity, and economic performance. Between 2015 and the beginning of 2018, the survey instrument was applied in 21 countries in Central America, sub-Saharan Africa and Asia. The data presented here include the raw survey response data, the indicator calculation code, and the resulting indicator values. These data can be used to quantify on- and off-farm pathways to food security, diverse diets, and changes in poverty for rural smallholder farm households

    Farmers’ use of improved agricultural inputs and practices: review and synthesis of research in Ethiopia

    No full text
    Ethiopia’s agriculture is typically subsistence, low input‐low output, and rainfed. In the light of a renewed government strategy to use improved inputs and practices to enhance smallholder agricultural productivity and production, strengthening the evidence‐base for the design and implementation of such a strategy becomes central. This paper reviews and synthesizes the findings of seven recent graduate theses researched in Ethiopia, and aims to identify underlying factors influencing the use of improved agricultural inputs among farmers. It shows that farmers’ education strongly influences improved input use across activity areas. Smallholder farmers who used such inputs for commercial production of crops and livestock products are better able to assess market opportunities, have more assets and/or income, and have better access to extension services and credit. However a large number of factors that influence improved inputs use were technology or location specific. The evidence suggests that transforming subsistence, low input‐low output agriculture into market‐oriented, high inputhigh output agriculture entails diverse strategies including promoting cross‐cutting factors like education, infrastructure and participation from women in agricultural development, and equally, targeting interventions like credit to the specific needs of farmers, their local contexts and technological attributes

    Review of community conservancies in Kenya

    No full text

    Urban consumption of meat and milk and its green and blue water footprints—Patterns in the 1980s and 2000s for Nairobi, Kenya

    Get PDF
    The problem Various studies show that the developing world experiences and will continue to experience a rise in consumption of animal proteins, particularly in cities, as a result of continued urbanization and income growth. Given the relatively large water footprint (WF) of animal products, this trend is likely to increase the pressure on already scarce water resources. Aim We estimate, analyse and interpret the changes in consumption of meat and milk between the 1980s and 2000s for three income classes in Nairobi, the ratio of domestic production to imports, and the WF (the volume of freshwater consumed) to produce these commodities in Kenya and abroad. Results Nairobi's middle-income class grew much faster than the overall population. In addition, milk consumption per capita by the middle-income group grew faster than for the city's population as a whole. Contrary to expectation, average meat consumption per capita across all income groups in Nairobi declined by 11%. Nevertheless, total meat consumption increased by a factor 2.2 as a result of population growth, while total milk consumption grew by a factor 5. As a result, the total WF of meat consumption increased by a factor 2.3 and the total WF of milk consumption by a factor 4.2. The increase in milk consumption was met by increased domestic production, whereas the growth in meat consumption was partly met through imports and an enlargement of the footprint in the countries neighbouring Kenya. Discussion and conclusion A likely future rise in the consumption of meat and milk in Nairobi will further enlarge the city's WF. Given Kenya's looming blue water scarcity, it is anticipated that this WF will increasingly spill over the borders of the country. Accordingly, policies aimed at meeting the rise in demand for meat and milk should consider the associated environmental constraints and the economic implications both nationally and internationally

    Urban consumption of meat and milk and its green and blue water footprints: Patterns in the 1980s and 2000s for Nairobi, Kenya

    No full text
    The problem: Various studies show that the developing world experiences and will continue to experience a rise in consumption of animal proteins, particularly in cities, as a result of continued urbanization and income growth. Given the relatively large water footprint (WF) of animal products, this trend is likely to increase the pressure on already scarce water resources. Aim: We estimate, analyse and interpret the changes in consumption of meat and milk between the 1980s and 2000s for three income classes in Nairobi, the ratio of domestic production to imports, and the WF (the volume of freshwater consumed) to produce these commodities in Kenya and abroad. Results: Nairobi's middle-income class grew much faster than the overall population. In addition, milk consumption per capita by the middle-income group grew faster than for the city's population as a whole. Contrary to expectation, average meat consumption per capita across all income groups in Nairobi declined by 11%. Nevertheless, total meat consumption increased by a factor 2.2 as a result of population growth, while total milk consumption grew by a factor 5. As a result, the total WF of meat consumption increased by a factor 2.3 and the total WF of milk consumption by a factor 4.2. The increase in milk consumption was met by increased domestic production, whereas the growth in meat consumption was partly met through imports and an enlargement of the footprint in the countries neighbouring Kenya. Discussion and conclusion: A likely future rise in the consumption of meat and milk in Nairobi will further enlarge the city's WF. Given Kenya's looming blue water scarcity, it is anticipated that this WF will increasingly spill over the borders of the country. Accordingly, policies aimed at meeting the rise in demand for meat and milk should consider the associated environmental constraints and the economic implications both nationally and internationally

    Livestock water and land productivity in Kenya and their implications for future resource use

    Get PDF
    Population growth and rising affluence increase the demand for agricultural commodities. Associated growth in production increases dependency on natural resources in countries that attempt to meet part or all of the new demand locally. This study assesses the impact of changing meat and milk production on natural resource use in Kenya under three plausible scenarios of socio-economic development, namely Business-As-Usual (BAU), Sustainable Development (SDP) and Kenya Vision 2030 (V2030) scenarios. The IMPACT model is used to estimate projected cattle, sheep, goats and camel production parameters for meat and milk. The BAU and SDP represent standard scenarios for Kenya of a global economic model, IMPACT, while V2030 incorporates in the model features specific to Kenya's medium-term national development plan. We use calculations of water footprint and land footprint as resource use indicators to quantify the anticipated appropriation of water and land resources for meat and milk production and trade by 2040. Though camel dairy production numbers increase the most by quadrupling between 2005 and 2040, it is cattle dairy production that significantly determined gains in production between the scenarios. Productivity gains under the SDP scenario does not match the investments made thereby leading to only slightly better values for water and land productivity than those achieved under the BAU scenario. Relative to the BAU scenario, improvement in land productivity under the V2030 scenario is the most dramatic for shoat milk production in the arid and semi-arid systems but the least marked for cattle milk production in the humid system. By quantifying water and land productivity across heterogenous production systems, our findings can aid decision-makers in Kenya and other developing countries to understand the implications of strategies aimed at increasing domestic agricultural and livestock production on water and land resources both locally and through trade with other countries

    Adaptation opportunities for smallholder dairy farmers facing resource scarcity: Integrated livestock, water and land management

    No full text
    Dairy intensification is a widely used means of achieving food security, improving farmer incomes and enhancing overall economic growth. However, intensification is dependent upon the availability and suitability of natural resources to sustain growth in production. Here, land and water footprints of milk production in three contrasting agro-ecological zones ranging from humid to semi-arid across nine counties of Kenya are quantified. Water and land use footprints across three potential intensification pathways are also outlined and evaluated against the baseline scenario, the currently prevailing practices or the S1 Futures scenario, treated as the benchmark. Intensification pathways focusing on improving livestock breeds, feed provisioning and milk output per cow and distinguished by contrasting management practices perform differentially across the three agro-ecological zones. Total water and land footprints increase for all scenarios relative to the baseline scenario. In particular, all the breed improvement scenarios, have much larger total water footprints than the baseline scenario. Improvement in breed to pure bred cattle across all production systems has the largest total water footprint across all the production systems. Across all the scenarios, the largest reduction in water footprint of milk production (75%) occurs with improvement in breed and feeding practices from two scenarios in the lowlands. Milk production by the cross-bred cattle is most efficient in the lowlands system whereas milk production by the pure breed Ayrshire is most land use efficient in the midlands system. Across the three agroecological zones, improving breeds, feed provisioning and milk production per cow may achieve production intensification but concurrently exacerbates resource limitation. Consequently, the heterogeneity inherent in resource availability across dairy production zones should be considered when developing strategies for increasing dairy production
    corecore