31 research outputs found

    Numerička studija izrađena pomoću ChemKin za rasplinjavanje vodene pare ugljene prašine i transformacije žive unutar rasplinjača s vodenom parom

    Get PDF
    Zero-emission coal (ZEC) technology has been actively studied recently. It aims to achieve zero emission of CO2 and other pollutants and the efficiency of this system can reach no less than 70%. Hydro-gasification of pulverized coal is a core process of ZEC. However, the mechanism of gasification and transformation of mercury speciation in the hydro-gasification is has not been understood precisely up until now. This restrains the ZEC’s commercialization. The purpose of this paper is to study the mechanism of hydro-gasification and mercury speciation transformation for coal in the gasifier with high temperature and pressure. Detailed chemical kinetics mechanism (CKM) has been proposed for hydro-gasification for pulverized coal in an entrained flow hydro-gasifier. The effects have been studied for different reaction conditions on hydro-gasification products and evolution of Hg in terms of the chemical reaction kinetics method. The CKM mechanism includes 130 elementary reactions and is solved with commercially available software, ChemKin. The calculation results are validated against the experimental data from literature and meaningful predictions are finally obtained. In addition, the chemical equilibrium calculation (CEC) is also used for predictions. Although the CEC method assumes all the reactions have reached chemical equilibrium, which is not the case in industrial reality, the calculation results are of value as reference.Tehnologija korištenja ugljena bez emisija (ZEC) se od nedavno aktivno proučava. Njezin cilj je postizanje nulte stope emisija CO2 te ostalih štetnih tvari dok efikasnost sustava mora biti minimalno 70%. Rasplinjavanje ugljene prašine vodenom parom je temeljni proces ZEC-a. Međutim, mehanizam rasplinjavanja i transformacije žive u rasplinjavanju vodenom parom još nije u potpunosti shvaćeno. To ograničava mogućnost komercijalne primjene ZEC-a. Cilj ovog rada je proučavanje mehanizama rasplinjavanja vodenom parom i transformacije žive za rasplinjavanje ugljena u rasplinjaču s visokim temperaturama i tlakom. Predloženi su detaljni kemijski kinetički mehanizmi (CKM) za rasplinjavanje ugljene prašine u fluidiziranom sloju sa zajedničkim tokom tvari. Proučeni su utjecaji raznih uvjeta pod kojim su se odvijale reakcije na produkte rasplinjavanja i evoluciju žive u uvjetima kemijskih reakcija kinetičke metode. CMK mehanizam sadrži 130 elementarnih reakcija i rješava se s komercijalno dostupnim programom, ChemKin. Rezultati simulacije se uspoređuju s eksperimentalnim iz literature te su konačno dobivena smislena predviđanja. Jednadžbe kemijske ravnoteže (CEC) su također korištene za predviđanja. Iako CEC metoda pretpostavlja da su sve reakcije postigle ravnotežu, što nije uvijek slučaj u industriji, rezultati tog proračuna mogu poslužiti kao referenca

    Thermally Developing Flow and Heat Transfer in Elliptical Minichannels with Constant Wall Temperature

    No full text
    Laminar convective heat transfer of elliptical minichannels is investigated for hydrodynamically fully developed but thermal developing flow with no-slip condition. A three-dimensional numerical model is developed in different elliptical geometries with the aspect ratio varying from 0.2 to 1. The effect of Reynolds number (25 ≤ Re ≤ 2000) on the local Nusselt number is examined in detail. The results indicate that the local Nusselt number is a decreasing function of Reynolds number and it is sensitive to Reynolds number especially for Re less than 250. The effect of aspect ratio on local Nusselt number is small when compared with the effect of Reynolds number on local Nusselt number. The local Nusselt number is independent of cross-section geometry at the inlet. The maximum effect of aspect ratio on local Nusselt number arises at the transition section rather than the fully developed region. However, the non-dimensional thermal entrance length is a monotonic decreasing concave function of aspect ratio but a weak function of Reynolds number. Correlations for the local Nusselt number and the thermal developing length for elliptical channels are developed with good accuracy, which may provide guidance for design and optimization of elliptical minichannel heat sinks

    Pressure Drop of Microchannel Plate Fin Heat Sinks

    No full text
    The entrance region constitutes a considerable fraction of the channel length in miniaturized devices. Laminar slip flow in microchannel plate fin heat sinks under hydrodynamically developing conditions is investigated semi-analytically and numerically in this paper. The semi-analytical model for the pressure drop of microchannel plate fin heat sinks is obtained by solving the momentum equation with the first-order velocity slip boundary conditions at the channel walls. The simple pressure drop model utilizes fundamental solutions from fluid dynamics to predict its constitutive components. The accuracy of the model is examined using computational fluid dynamics (CFD) simulations and the experimental and numerical data available in the literature. The model can be applied to either apparent liquid slip over hydrophobic and superhydrophobic surfaces or gas slip flow in microchannel heat sinks. The developed model has an accuracy of 92 percent for slip flow in microchannel plate fin heat sinks. The developed model may be used to predict the pressure drop of slip flow in microchannel plate fin heat sinks for minimizing the effort and expense of experiments, especially in the design and optimization of microchannel plate fin heat sinks

    Numerical Research on Biomass Gasification in a Quadruple Fluidized Bed Gasifier

    No full text
    Utilization of bioenergy with carbon capture can realize carbon-negative syngas production. The quadruple fluidized bed gasifier (QFBG) integrates a chemical looping oxygen generation process and a dual fluidized bed gasifier with limestone as bed material. It is one promising device that can convert biomass to H2-rich syngas whilst capturing CO2 with little energy penalty. However, experimental or numerical simulation of QFBG is rarely reported on due to its complex structure, hindering the further commercialization and deployment of QFBG. In this work, a new computational fluid dynamics (CFD) solver is proposed to predict the complex physicochemical processes in QFBG based on the multi-phase particle in cell (MPPIC) methodology with the assistance of the open source software, OpenFOAM. The solver is first validated against experimental data in terms of hydrodynamics and reaction kinetics. Then, the solver is used to investigate the QFBG property. It is found that the QFBG can operate stably. The cold gas efficiency, H2 molar fraction, and CO2 capture rate of the QFBG are predicted to be 87.2%, 93.3%, and 90.5%, respectively, which is promising. It is believed that the solver can give reliable predictions for similar fluidized bed reactors
    corecore