14,876 research outputs found
An associative memory for the on-line recognition and prediction of temporal sequences
This paper presents the design of an associative memory with feedback that is
capable of on-line temporal sequence learning. A framework for on-line sequence
learning has been proposed, and different sequence learning models have been
analysed according to this framework. The network model is an associative
memory with a separate store for the sequence context of a symbol. A sparse
distributed memory is used to gain scalability. The context store combines the
functionality of a neural layer with a shift register. The sensitivity of the
machine to the sequence context is controllable, resulting in different
characteristic behaviours. The model can store and predict on-line sequences of
various types and length. Numerical simulations on the model have been carried
out to determine its properties.Comment: Published in IJCNN 2005, Montreal, Canad
Online Matrix Completion Through Nuclear Norm Regularisation
It is the main goal of this paper to propose a novel method to perform matrix
completion on-line. Motivated by a wide variety of applications, ranging from
the design of recommender systems to sensor network localization through
seismic data reconstruction, we consider the matrix completion problem when
entries of the matrix of interest are observed gradually. Precisely, we place
ourselves in the situation where the predictive rule should be refined
incrementally, rather than recomputed from scratch each time the sample of
observed entries increases. The extension of existing matrix completion methods
to the sequential prediction context is indeed a major issue in the Big Data
era, and yet little addressed in the literature. The algorithm promoted in this
article builds upon the Soft Impute approach introduced in Mazumder et al.
(2010). The major novelty essentially arises from the use of a randomised
technique for both computing and updating the Singular Value Decomposition
(SVD) involved in the algorithm. Though of disarming simplicity, the method
proposed turns out to be very efficient, while requiring reduced computations.
Several numerical experiments based on real datasets illustrating its
performance are displayed, together with preliminary results giving it a
theoretical basis.Comment: Corrected a typo in the affiliatio
Detection of gravitational waves from inspiraling compact binaries using a network of interferometric detectors
We formulate the data analysis problem for the detection of the Newtonian
waveform from an inspiraling compact-binary by a network of arbitrarily
oriented and arbitrarily distributed laser interferometric gravitational wave
detectors. We obtain for the first time the relation between the optimal
statistic and the magnitude of the network correlation vector, which is
constructed from the matched network-filter. This generalizes the calculation
reported in an earlier work (gr-qc/9906064), where the detectors are taken to
be coincident.Comment: 6 pages, RevTeX. Based on talk given at GWDAW-99, Rom
Stochastic model of transcription factor-regulated gene expression
We consider a stochastic model of transcription factor (TF)-regulated gene
expression. The model describes two genes: Gene A and Gene B which synthesize
the TFs and the target gene proteins respectively. We show through analytic
calculations that the TF fluctuations have a significant effect on the
distribution of the target gene protein levels when the mean TF level falls in
the highest sensitive region of the dose-response curve. We further study the
effect of reducing the copy number of Gene A from two to one. The enhanced TF
fluctuations yield results different from those in the deterministic case. The
probability that the target gene protein level exceeds a threshold value is
calculated with a knowledge of the probability density functions associated
with the TF and target gene protein levels. Numerical simulation results for a
more detailed stochastic model are shown to be in agreement with those obtained
through analytic calculations. The relevance of these results in the context of
the genetic disorder haploinsufficiency is pointed out. Some experimental
observations on the haploinsufficiency of the tumour suppressor gene, Nkx3.1,
are explained with the help of the stochastic model of TF-regulated gene
expression.Comment: 17 pages, 11 figures. Accepted for publication in Physical Biolog
Spin systems with dimerized ground states
In view of the numerous examples in the literature it is attempted to outline
a theory of Heisenberg spin systems possessing dimerized ground states (``DGS
systems") which comprises all known examples. Whereas classical DGS systems can
be completely characterized, it was only possible to provide necessary or
sufficient conditions for the quantum case. First, for all DGS systems the
interaction between the dimers must be balanced in a certain sense. Moreover,
one can identify four special classes of DGS systems: (i) Uniform pyramids,
(ii) systems close to isolated dimer systems, (iii) classical DGS systems, and
(iv), in the case of , systems of two dimers satisfying four
inequalities. Geometrically, the set of all DGS systems may be visualized as a
convex cone in the linear space of all exchange constants. Hence one can
generate new examples of DGS systems by positive linear combinations of
examples from the above four classes.Comment: With corrections of proposition 4 and other minor change
Differential Interleukin-2 Transcription Kinetics Render Mouse but Not Human T Cells Vulnerable to Splicing Inhibition Early after Activation
T cells are nodal players in the adaptive immune response against pathogens and malignant cells. Alternative splicing plays a crucial role in T cell activation, which is analyzed mainly at later time points upon stimulation. Here we have discovered a 2-h time window early after stimulation where optimal splicing efficiency or, more generally, gene expression efficiency is crucial for successful T cell activation. Reducing the splicing efficiency at 4 to 6 h poststimulation significantly impaired murine T cell activation, which was dependent on the expression dynamics of the Egr1-Nab2-interleukin-2 (IL-2) pathway. This time window overlaps the time of peak IL-2 de novo transcription, which, we suggest, represents a permissive time window in which decreased splicing (or transcription) efficiency reduces mature IL-2 production, thereby hampering murine T cell activation. Notably, the distinct expression kinetics of the Egr1-Nab2-IL-2 pathway between mouse and human render human T cells refractory to this vulnerability. We propose that the rational temporal modulation of splicing or transcription during peak de novo expression of key effectors can be used to fine-tune stimulation-dependent biological outcomes. Our data also show that critical consideration is required when extrapolating mouse data to the human system in basic and translational research
Lower bounds on the dilation of plane spanners
(I) We exhibit a set of 23 points in the plane that has dilation at least
, improving the previously best lower bound of for the
worst-case dilation of plane spanners.
(II) For every integer , there exists an -element point set
such that the degree 3 dilation of denoted by in the domain of plane geometric spanners. In the
same domain, we show that for every integer , there exists a an
-element point set such that the degree 4 dilation of denoted by
The
previous best lower bound of holds for any degree.
(III) For every integer , there exists an -element point set
such that the stretch factor of the greedy triangulation of is at least
.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2
table
Neutron-star Radius from a Population of Binary Neutron Star Mergers
We show how gravitational-wave observations with advanced detectors of tens
to several tens of neutron-star binaries can measure the neutron-star radius
with an accuracy of several to a few percent, for mass and spatial
distributions that are realistic, and with none of the sources located within
100 Mpc. We achieve such an accuracy by combining measurements of the total
mass from the inspiral phase with those of the compactness from the postmerger
oscillation frequencies. For estimating the measurement errors of these
frequencies we utilize analytical fits to postmerger numerical-relativity
waveforms in the time domain, obtained here for the first time, for four
nuclear-physics equations of state and a couple of values for the mass. We
further exploit quasi-universal relations to derive errors in compactness from
those frequencies. Measuring the average radius to well within 10% is possible
for a sample of 100 binaries distributed uniformly in volume between 100 and
300 Mpc, so long as the equation of state is not too soft or the binaries are
not too heavy.Comment: 9 pages and 7 figure
Aluminium foil for electrical windings
COMPAREL to copper, aluminium is far more abundant. This Is particularly true for India. The price of aluminium unlike that of copper has been quite stable for over a quarter century and for equal conductivity, the current price of aluminium is very considerably lower than that
of copper. In view of its abundance coupled with
versatile properties and relatively stable and competit-ive price, aluminium has rapidly established itself in various fields and has, in particular, replaced copper in many cases. Aluminium has firmly established itself as an electrical conductor. Today approximately 97% of high voltage transmissioncables and about 75% of distribution cables are made of aluminium. During recent years alumi-nium has also made effective inroad into the bus bar
field
- …